458 research outputs found
Does the Sun shrink with increasing magnetic activity?
It has been demonstrated that frequencies of f-modes can be used to estimate
the solar radius to a good accuracy. These frequencies have been used to study
temporal variations in the solar radius with conflicting results. The variation
in f-mode frequencies is more complicated than what is assumed in these
studies. If a careful analysis is performed then it turns out that there is no
evidence for any variation in the solar radius.Comment: To appear in Astrophys.
Solar Oscillations and Convection: II. Excitation of Radial Oscillations
Solar p-mode oscillations are excited by the work of stochastic,
non-adiabatic, pressure fluctuations on the compressive modes. We evaluate the
expression for the radial mode excitation rate derived by Nordlund and Stein
(Paper I) using numerical simulations of near surface solar convection. We
first apply this expression to the three radial modes of the simulation and
obtain good agreement between the predicted excitation rate and the actual mode
damping rates as determined from their energies and the widths of their
resolved spectral profiles. We then apply this expression for the mode
excitation rate to the solar modes and obtain excellent agreement with the low
l damping rates determined from GOLF data. Excitation occurs close to the
surface, mainly in the intergranular lanes and near the boundaries of granules
(where turbulence and radiative cooling are large). The non-adiabatic pressure
fluctuations near the surface are produced by small instantaneous local
imbalances between the divergence of the radiative and convective fluxes near
the solar surface. Below the surface, the non-adiabatic pressure fluctuations
are produced primarily by turbulent pressure fluctuations (Reynolds stresses).
The frequency dependence of the mode excitation is due to effects of the mode
structure and the pressure fluctuation spectrum. Excitation is small at low
frequencies due to mode properties -- the mode compression decreases and the
mode mass increases at low frequency. Excitation is small at high frequencies
due to the pressure fluctuation spectrum -- pressure fluctuations become small
at high frequencies because they are due to convection which is a long time
scale phenomena compared to the dominant p-mode periods.Comment: Accepted for publication in ApJ (scheduled for Dec 10, 2000 issue).
17 pages, 27 figures, some with reduced resolution -- high resolution
versions available at http://www.astro.ku.dk/~aake/astro-ph/0008048
The underlying physical meaning of the relation
Asteroseismology of stars that exhibit solar-like oscillations are enjoying a
growing interest with the wealth of observational results obtained with the
CoRoT and Kepler missions. In this framework, scaling laws between
asteroseismic quantities and stellar parameters are becoming essential tools to
study a rich variety of stars. However, the physical underlying mechanisms of
those scaling laws are still poorly known. Our objective is to provide a
theoretical basis for the scaling between the frequency of the maximum in the
power spectrum () of solar-like oscillations and the cut-off
frequency (). Using the SoHO GOLF observations together with
theoretical considerations, we first confirm that the maximum of the height in
oscillation power spectrum is determined by the so-called \emph{plateau} of the
damping rates. The physical origin of the plateau can be traced to the
destabilizing effect of the Lagrangian perturbation of entropy in the
upper-most layers which becomes important when the modal period and the local
thermal relaxation time-scale are comparable. Based on this analysis, we then
find a linear relation between and , with a
coefficient that depends on the ratio of the Mach number of the exciting
turbulence to the third power to the mixing-length parameter.Comment: 8 pages, 11 figures. Accepted in A&
Excitation of solar-like oscillations across the HR diagram
We extend semi-analytical computations of excitation rates for solar
oscillation modes to those of other solar-like oscillating stars to compare
them with recent observations. Numerical 3D simulations of surface convective
zones of several solar-type oscillating stars are used to characterize the
turbulent spectra as well as to constrain the convective velocities and
turbulent entropy fluctuations in the uppermost part of the convective zone of
such stars. These constraints, coupled with a theoretical model for stochastic
excitation, provide the rate 'P' at which energy is injected into the p-modes
by turbulent convection. These energy rates are compared with those derived
directly from the 3D simulations. The excitation rates obtained from the 3D
simulations are systematically lower than those computed from the
semi-analytical excitation model. We find that Pmax, the excitation rate
maximum, scales as (L/M)^s where s is the slope of the power law and L and M
are the mass and luminosity of the 1D stellar model built consistently with the
associated 3D simulation. The slope is found to depend significantly on the
adopted form of the eddy time-correlation ; using a Lorentzian form results in
s=2.6, whereas a Gaussian one gives s=3.1. Finally, values of Vmax, the maximum
in the mode velocity, are estimated from the computed power laws for Pmax and
we find that Vmax increases as (L/M)^sv. Comparisons with the currently
available ground-based observations show that the computations assuming a
Lorentzian eddy time-correlation yield a slope, sv, closer to the observed one
than the slope obtained when assuming a Gaussian. We show that the spatial
resolution of the 3D simulations must be high enough to obtain accurate
computed energy rates.Comment: 14 pages ; 7 figures ; accepted for publication in Astrophysics &
Astronom
How much do helioseismological inferences depend upon the assumed reference model?
We investigate systematic uncertainties in determining the profiles of the
solar sound speed, density, and adiabatic index by helioseismological
techniques. We find that rms uncertainties-averaged over the sun of ~ 0.2%-0.4%
are contributed to the sound speed profile by each of three sources: 1)the
choice of assumed reference model, 2) the width of the inversion kernel, and 3)
the measurements errors. The density profile is about an order of magnitude
less well determined by the helioseismological measurements. The profile of the
adiabatic index is determined to an accuracy of about 0.2% . We find that even
relatively crude reference models yield reasonably accurate solar parameters.Comment: Accepted for publication in ApJ . Related material at
http://www.sns.ias.edu/~jn
Helioseismological Implications of Recent Solar Abundance Determinations
We show that standard solar models are in good agreement with the
helioseismologically determined sound speed and density as a function of solar
radius, the depth of the convective zone, and the surface helium abundance, as
long as those models do not incorporate the most recent heavy element abundance
determinations. However, sophisticated new analyses of the solar atmosphere
infer lower abundances of the lighter metals (like C, N, O, Ne, and Ar) than
the previously widely used surface abundances. We show that solar models that
include the lower heavy element abundances disagree with the solar profiles of
sound speed and density as well as the depth of the convective zone and the
helium abundance. The disagreements for models with the new abundances range
from factors of several to many times the quoted uncertainties in the
helioseismological measurements. The disagreements are at temperatures below
what is required for solar interior fusion reactions and therefore do not
significantly affect solar neutrino emission. If errors in thecalculated OPAL
opacities are solely responsible for the disagreements, then the corrections in
the opacity must extend from 2 times 10^6 K (R = 0.7R_Sun)to 5 times 10^6 K (R
= 0.4 R_Sun), with opacity increases of order 10%.Comment: ApJ in press; clarified Figure
Frozen spatial chaos induced by boundaries
We show that rather simple but non-trivial boundary conditions could induce
the appearance of spatial chaos (that is stationary, stable, but spatially
disordered configurations) in extended dynamical systems with very simple
dynamics. We exemplify the phenomenon with a nonlinear reaction-diffusion
equation in a two-dimensional undulated domain. Concepts from the theory of
dynamical systems, and a transverse-single-mode approximation are used to
describe the spatially chaotic structures.Comment: 9 pages, 6 figures, submitted for publication; for related work visit
http://www.imedea.uib.es/~victo
A stochastic flow rule for granular materials
There have been many attempts to derive continuum models for dense granular
flow, but a general theory is still lacking. Here, we start with Mohr-Coulomb
plasticity for quasi-2D granular materials to calculate (average) stresses and
slip planes, but we propose a "stochastic flow rule" (SFR) to replace the
principle of coaxiality in classical plasticity. The SFR takes into account two
crucial features of granular materials - discreteness and randomness - via
diffusing "spots" of local fluidization, which act as carriers of plasticity.
We postulate that spots perform random walks biased along slip-lines with a
drift direction determined by the stress imbalance upon a local switch from
static to dynamic friction. In the continuum limit (based on a Fokker-Planck
equation for the spot concentration), this simple model is able to predict a
variety of granular flow profiles in flat-bottom silos, annular Couette cells,
flowing heaps, and plate-dragging experiments -- with essentially no fitting
parameters -- although it is only expected to function where material is at
incipient failure and slip-lines are inadmissible. For special cases of
admissible slip-lines, such as plate dragging under a heavy load or flow down
an inclined plane, we postulate a transition to rate-dependent Bagnold
rheology, where flow occurs by sliding shear planes. With different yield
criteria, the SFR provides a general framework for multiscale modeling of
plasticity in amorphous materials, cycling between continuum limit-state stress
calculations, meso-scale spot random walks, and microscopic particle
relaxation
Stellar Model Analysis of the Oscillation Spectrum of eta Bootis Obtained from MOST
Eight consecutive low-frequency radial p-modes are identified in the G0 IV
star eta Bootis based on 27 days of ultraprecise rapid photometry obtained by
the MOST (Microvariability & Oscillations of Stars) satellite. The MOST data
extend smoothly to lower overtones the sequence of radial p-modes reported in
earlier groundbased spectroscopy by other groups. The lower-overtone modes from
the MOST data constrain the interior structure of the model of eta Boo. With
the interior fit anchored by the lower-overtone modes seen by MOST, standard
models are not able to fit the higher-overtone modes with the same level of
accuracy. The discrepancy is similar to the discrepancy that exists between the
Sun's observed p-mode frequencies and the p-mode frequencies of the standard
solar model. This discrepancy promises to be a powerful constraint on models of
3D convection.Comment: 30 pages with 14 figures. Accepted for publication in Ap
Helioseismic analysis of the hydrogen partition function in the solar interior
The difference in the adiabatic gradient gamma_1 between inverted solar data
and solar models is analyzed. To obtain deeper insight into the issues of
plasma physics, the so-called ``intrinsic'' difference in gamma_1 is extracted,
that is, the difference due to the change in the equation of state alone. Our
method uses reference models based on two equations of state currently used in
solar modeling, the Mihalas-Hummer-Dappen (MHD) equation of state, and the OPAL
equation of state (developed at Livermore). Solar oscillation frequencies from
the SOI/MDI instrument on board the SOHO spacecraft during its first 144 days
in operation are used. Our results confirm the existence of a subtle effect of
the excited states in hydrogen that was previously studied only theoretically
(Nayfonov & Dappen 1998). The effect stems from internal partition function of
hydrogen, as used in the MHD equation of state. Although it is a pure-hydrogen
effect, it takes place in somewhat deeper layers of the Sun, where more than
90% of hydrogen is ionized, and where the second ionization zone of helium is
located. Therefore, the effect will have to be taken into account in reliable
helioseismic determinations of the astrophysically relevant helium-abundance of
the solar convection zone.Comment: 30 pages, 4 figures, 1 table. Revised version submitted to Ap
- …
