68 research outputs found
Statistical methods for genetic association studies with response-selective sampling designs
This dissertation describes new statistical methods designed to improve the power of genetic association studies. Of particular interest are studies with a response-selective sampling design, i.e. case-control studies of unrelated individuals and case-control studies of family members. The statistical methods presented in this dissertation (a) take advantage of information available in the distribution of the covariates in case-control studies by modeling the ascertainment process; (b) incorporate information from both family-based studies and case-control studies of unrelated individuals; (c) use "richer" models of the relationship between genetic variants and phenotypes, compared to models used in standard genetic association studies; and (d) integrate different types of data, such as genomic, epigenomic, transcriptomic and environmental information. Together, these methods will improve the ability of the genetics community to identify the genetic basis of complex human phenotypes.UBL - phd migration 201
A Guide to Directing Group Removal: 8âAminoquinoline
The use of directing groups allows high levels of selectivity to be achieved in transition metalâcatalyzed transformations. Efficient removal of these auxiliaries after successful functionalization, however, can be very challenging. This review provides a critical overview of strategies used for removal of Daugulisâ 8âaminoquinoline (2005â2020), one of the most widely used N,Nâbidentate directing groups. The limitations of these strategies are discussed and alternative approaches are suggested for challenging substrates. Our aim is to provide a comprehensive endâusersâ guide for chemists in academia and industry who want to harness the synthetic power of directing groupsâand be able to remove them from their final products
Distinctive facial features in idiopathic Moyamoya disease in Caucasians: a first systematic analysis
Development and application of statistical models for medical scientific researc
Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts.
It is estimated that 350 million individuals worldwide suffer from rare diseases, which are predominantly caused by mutation in a single gene1. The current molecular diagnostic rate is estimated at 50%, with whole-exome sequencing (WES) among the most successful approaches2-5. For patients in whom WES is uninformative, RNA sequencing (RNA-seq) has shown diagnostic utility in specific tissues and diseases6-8. This includes muscle biopsies from patients with undiagnosed rare muscle disorders6,9, and cultured fibroblasts from patients with mitochondrial disorders7. However, for many individuals, biopsies are not performed for clinical care, and tissues are difficult to access. We sought to assess the utility of RNA-seq from blood as a diagnostic tool for rare diseases of different pathophysiologies. We generated whole-blood RNA-seq from 94 individuals with undiagnosed rare diseases spanning 16 diverse disease categories. We developed a robust approach to compare data from these individuals with large sets of RNA-seq data for controls (nâ=â1,594 unrelated controls and nâ=â49 family members) and demonstrated the impacts of expression, splicing, gene and variant filtering strategies on disease gene identification. Across our cohort, we observed that RNA-seq yields a 7.5% diagnostic rate, and an additional 16.7% with improved candidate gene resolution
The impact of sex on gene expression across human tissues
Many complex human phenotypes exhibit sex-differentiated characteristics. However, the molecular mechanisms underlying these differences remain largely unknown. We generated a catalog of sex differences in gene expression and in the genetic regulation of gene expression across 44 human tissue sources surveyed by the Genotype-Tissue Expression project (GTEx, v8 release). We demonstrate that sex influences gene expression levels and cellular composition of tissue samples across the human body. A total of 37% of all genes exhibit sex-biased expression in at least one tissue. We identify cis expression quantitative trait loci (eQTLs) with sex-differentiated effects and characterize their cellular origin. By integrating sex-biased eQTLs with genome-wide association study data, we identify 58 gene-trait associations that are driven by genetic regulation of gene expression in a single sex. These findings provide an extensive characterization of sex differences in the human transcriptome and its genetic regulation
Recommended from our members
The impact of sex on gene expression across human tissues
Many complex human phenotypes exhibit sex-differentiated characteristics, however the underlying molecular mechanisms of these differences remain largely unknown. Here, we present an extensive catalog of both sex differences in gene expression and its genetic regulation across 44 human tissue sources surveyed by GTEx (v8 release). We demonstrate that sex strongly influences gene expression levels and cellular composition of tissue samples across the human body. The effect of sex on gene expression is widespread, with a total of 37% of all genes exhibiting sex-biased expression in at least one tissue. This suggests that many if not most biological processes, and thus complex traits and diseases, are impacted by sex effects on the transciptome. We expand the identification of cis-eQTLs with sex-differentiated effects and characterize their cellular origin. By integrating sex-biased eQTLs with genome-wide association study data, we identify 58 gene-trait associations that are driven by genetic regulation in a single sex, including novel associations not detected with sex-agnostic approaches. Altogether we provide the most comprehensive characterization of sex differences in the human transcriptome and its regulation to date.Peer ReviewedPreprin
Recommended from our members
Impact of admixture and ancestry on eQTL analysis and GWAS colocalization in GTEx
Background
Population structure among study subjects may confound genetic association studies, and lack of proper correction can lead to spurious findings. The Genotype-Tissue Expression (GTEx) project largely contains individuals of European ancestry, but the v8 release also includes up to 15% of individuals of non-European ancestry. Assessing ancestry-based adjustments in GTEx improves portability of this research across populations and further characterizes the impact of population structure on GWAS colocalization.
Results
Here, we identify a subset of 117 individuals in GTEx (v8) with a high degree of population admixture and estimate genome-wide local ancestry. We perform genome-wide cis-eQTL mapping using admixed samples in seven tissues, adjusted by either global or local ancestry. Consistent with previous work, we observe improved power with local ancestry adjustment. At loci where the two adjustments produce different lead variants, we observe 31 loci (0.02%) where a significant colocalization is called only with one eQTL ancestry adjustment method. Notably, both adjustments produce similar numbers of significant colocalizations within each of two different colocalization methods, COLOC and FINEMAP. Finally, we identify a small subset of eQTL-associated variants highly correlated with local ancestry, providing a resource to enhance functional follow-up.
Conclusions
We provide a local ancestry map for admixed individuals in the GTEx v8 release and describe the impact of ancestry and admixture on gene expression, eQTLs, and GWAS colocalization. While the majority of the results are concordant between local and global ancestry-based adjustments, we identify distinct advantages and disadvantages to each approach
Genetic effects on gene expression across human tissues
Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of diseas
Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology
Asthma, hay fever (or allergic rhinitis) and eczema (or atopic dermatitis) often coexist in the same individuals, partly because of a shared genetic origin. To identify shared risk variants, we performed a genome-wide association study (GWAS; n = 360,838) of a broad allergic disease phenotype that considers the presence of any one of these three diseases. We identified 136 independent risk variants (P < 3 Ă 10-8), including 73 not previously reported, which implicate 132 nearby genes in allergic disease pathophysiology. Disease-specific effects were detected for only six variants, confirming that most represent shared risk factors. Tissue-specific heritability and biological process enrichment analyses suggest that shared risk variants influence lymphocyte-mediated immunity. Six target genes provide an opportunity for drug repositioning, while for 36 genes CpG methylation was found to influence transcription independently of genetic effects. Asthma, hay fever and eczema partly coexist because they share many genetic risk variants that dysregulate the expression of immune-related genes
Genetic effects on gene expression across human tissues
Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease
- âŠ