3 research outputs found

    Deciphering the infectious process of Colletotrichum lupini in lupin through transcriptomic and proteomic analysis

    Get PDF
    The fungal phytopathogen Colletotrichum lupini is responsible for lupin anthracnose, resulting in significant yield losses worldwide. The molecular mechanisms underlying this infectious process are yet to be elucidated. This study proposes to evaluate C. lupini gene expression and protein synthesis during lupin infection, using, respectively, an RNAseq-based transcriptomic approach and a mass spectrometry-based proteomic approach. Patterns of differentially-expressed genes in planta were evaluated from 24 to 84 hours post-inoculation, and compared to in vitro cultures. A total of 897 differentially-expressed genes were identified from C. lupini during interaction with white lupin, of which 520 genes were predicted to have a putative function, including carbohydrate active enzyme, effector, protease or transporter-encoding genes, commonly described as pathogenicity factors for other Colletotrichum species during plant infection, and 377 hypothetical proteins. Simultaneously, a total of 304 proteins produced during the interaction were identified and quantified by mass spectrometry. Taken together, the results highlight that the dynamics of symptoms, gene expression and protein synthesis shared similarities to those of hemibiotrophic pathogens. In addition, a few genes with unknown or poorly-described functions were found to be specifically associated with the early or late stages of infection, suggesting that they may be of importance for pathogenicity. This study, conducted for the first time on a species belonging to the Colletotrichum acutatum species complex, presents an opportunity to deepen functional analyses of the genes involved in the pathogenicity of Colletotrichum spp. during the onset of plant infection

    Molecular and Evolutionary Bases of Within-Patient Genotypic and Phenotypic Diversity in Escherichia coli Extraintestinal Infections

    Get PDF
    Although polymicrobial infections, caused by combinations of viruses, bacteria, fungi and parasites, are being recognised with increasing frequency, little is known about the occurrence of within-species diversity in bacterial infections and the molecular and evolutionary bases of this diversity. We used multiple approaches to study the genomic and phenotypic diversity among 226 Escherichia coli isolates from deep and closed visceral infections occurring in 19 patients. We observed genomic variability among isolates from the same site within 11 patients. This diversity was of two types, as patients were infected either by several distinct E. coli clones (4 patients) or by members of a single clone that exhibit micro-heterogeneity (11 patients); both types of diversity were present in 4 patients. A surprisingly wide continuum of antibiotic resistance, outer membrane permeability, growth rate, stress resistance, red dry and rough morphotype characteristics and virulence properties were present within the isolates of single clones in 8 of the 11 patients showing genomic micro-heterogeneity. Many of the observed phenotypic differences within clones affected the trade-off between self-preservation and nutritional competence (SPANC). We showed in 3 patients that this phenotypic variability was associated with distinct levels of RpoS in co-existing isolates. Genome mutational analysis and global proteomic comparisons in isolates from a patient revealed a star-like relationship of changes amongst clonally diverging isolates. A mathematical model demonstrated that multiple genotypes with distinct RpoS levels can co-exist as a result of the SPANC trade-off. In the cases involving infection by a single clone, we present several lines of evidence to suggest diversification during the infectious process rather than an infection by multiple isolates exhibiting a micro-heterogeneity. Our results suggest that bacteria are subject to trade-offs during an infectious process and that the observed diversity resembled results obtained in experimental evolution studies. Whatever the mechanisms leading to diversity, our results have strong medical implications in terms of the need for more extensive isolate testing before deciding on antibiotic therapies

    Cold Stratification and Exogenous Nitrates Entail Similar Functional Proteome Adjustments during <i>Arabidopsis</i> Seed Dormancy Release

    No full text
    Despite having very similar initial pools of stored mRNAs and proteins in the dry state, mature Arabidopsis seeds can either proceed toward radicle protrusion or stay in a dormant state upon imbibition. Dormancy breaking, a prerequisite to germination completion, can be induced by different treatments though the underlying mechanisms remain elusive. Thus, we investigated the consequence of such treatments on the seed proteome. Two unrelated dormancy-releasing treatments were applied to dormant seeds, namely, cold stratification and exogenous nitrates, in combination with differential proteomic tools to highlight the specificities of the imbibed dormant state. The results reveal that both treatments lead to highly similar proteome adjustments. In the imbibed dormant state, enzymes involved in reserve mobilization are less accumulated and it appears that several energetically costly processes associated to seed germination and preparation for subsequent seedling establishment are repressed. Our data suggest that dormancy maintenance is associated to an abscisic-acid-dependent recapitulation of the late maturation program resulting in a higher potential to cope with environmental stresses. The comparison of the present results with previously published -omic data sets reinforces and extends the assumption that post-transcriptional, translational, and post-translational regulations are determinant for seed germination
    corecore