109 research outputs found

    Carotid Intima-Media Thickness and Incident ESRD: The Atherosclerosis Risk in Communities (ARIC) Study

    Get PDF
    Carotid intima-media thickness has been reported to predict kidney function decline. However, whether carotid intima-media thickness is associated with a hard kidney end point, ESRD, has not been investigated

    Incorporating kidney disease measures into cardiovascular risk prediction: Development and validation in 9 million adults from 72 datasets

    Get PDF
    Background: Chronic kidney disease (CKD) measures (estimated glomerular filtration rate [eGFR] and albuminuria) are frequently assessed in clinical practice and improve the prediction of incident cardiovascular disease (CVD), yet most major clinical guidelines do not have a standardized approach for incorporating these measures into CVD risk prediction. CKD Patch is a validated method to calibrate and improve the predicted risk from established equations according to CKD measures.Methods: Utilizing data from 4,143,535 adults from 35 datasets, we developed several CKD Patches incorporating eGFR and albuminuria, to enhance prediction of risk of atherosclerotic CVD (ASCVD) by the Pooled Cohort Equation (PCE) and CVD mortality by Systematic COronary Risk Evaluation (SCORE). The risk enhancement by CKD Patch was determined by the deviation between individual CKD measures and the values expected from their traditional CVD risk factors and the hazard ratios for eGFR and albuminuria. We then validated this approach among 4,932,824 adults from 37 independent datasets, comparing the original PCE and SCORE equations (recalibrated in each dataset) to those with addition of CKD Patch.Findings: We confirmed the prediction improvement with the CKD Patch for CVD mortality beyond SCORE and ASCVD beyond PCE in validation datasets (Δc-statistic 0.027 [95% CI 0.018-0.036] and 0.010 [0.007-0.013] and categorical net reclassification improvement 0.080 [0.032-0.127] and 0.056 [0.044-0.067], respectively). The median (IQI) of the ratio of predicted risk for CVD mortality with CKD Patch vs. the original prediction with SCORE was 2.64 (1.89-3.40) in very high-risk CKD (e.g., eGFR 30-44 ml/min/1.73m2 with albuminuria ≥30 mg/g), 1.86 (1.48-2.44) in high-risk CKD (e.g., eGFR 45-59 ml/min/1.73m2 with albuminuria 30-299 mg/g), and 1.37 (1.14-1.69) in moderate risk CKD (e.g., eGFR 60-89 ml/min/1.73m2 with albuminuria 30-299 mg/g), indicating considerable risk underestimation in CKD with SCORE. The corresponding estimates for ASCVD with PCE were 1.55 (1.37-1.81), 1.24 (1.10-1.54), and 1.21 (0.98-1.46).Interpretation: The CKD Patch can be used to quantitatively enhance ASCVD and CVD mortality risk prediction equations recommended in major US and European guidelines according to CKD measures, when available.Funding: US National Kidney Foundation and the NIDDK

    Ankle-brachial index and physical function in older individuals: The Atherosclerosis Risk in Communities (ARIC) study

    Get PDF
    Most prior studies investigating the association of lower extremity peripheral artery disease (PAD) with physical function were small or analyzed selected populations (e.g., patients at vascular clinics or persons with reduced function), leaving particular uncertainty regarding the association in the general community

    Identification of Incident CKD Stage 3 in Research Studies

    Get PDF
    In epidemiologic research, incident chronic kidney disease (CKD) is commonly determined by laboratory tests performed at planned study visits. Given the morbidity and mortality associated with CKD, persons with incident disease may be less likely to attend scheduled visits, affecting observed associations. The objective of this study was to quantify loss-to-follow-up by CKD status, and to determine whether supplementation with diagnostic code data improves capture of incident CKD

    Albuminuria Testing in Hypertension and Diabetes:An Individual-Participant Data Meta-Analysis in a Global Consortium

    Get PDF
    Albuminuria is an under-recognized component of chronic kidney disease definition, staging, and prognosis. Guidelines, particularly for hypertension, conflict on recommendations for urine albumin-to-creatinine ratio (ACR) measurement. Separately among 1 344 594 adults with diabetes and 2 334 461 nondiabetic adults with hypertension from the chronic kidney disease Prognosis Consortium, we assessed ACR testing, estimated the prevalence and incidence of ACR ≥30 mg/g and developed risk models for ACR ≥30 mg/g. The ACR screening rate (cohort range) was 35.1% (12.3%-74.5%) in diabetes and 4.1% (1.3%-20.7%) in hypertension. Screening was largely unrelated to the predicted risk of prevalent albuminuria. The median prevalence of ACR ≥30 mg/g across cohorts was 32.1% in diabetes and 21.8% in hypertension. Higher systolic blood pressure was associated with a higher prevalence of albuminuria (odds ratio [95% CI] per 20 mm Hg in diabetes, 1.50 [1.42-1.60]; in hypertension, 1.36 [1.28-1.45]). The ratio of undetected (due to lack of screening) to detected ACR ≥30 mg/g was estimated at 1.8 in diabetes and 19.5 in hypertension. Among those with ACR/g, the median 5-year incidence of ACR ≥30 mg/g across cohorts was 23.9% in diabetes and 21.7% in hypertension. Incident albuminuria was associated with initiation of renin-angiotensin-aldosterone system inhibitors (incidence-rate ratio [95% CI], diabetes 3.09 [2.71-3.53]; hypertension 2.87 [2.29-3.59]). In conclusion, despite similar risk of albuminuria to those with diabetes, ACR screening in patients with hypertension was low. Our findings suggest that regular albuminuria screening should be emphasized to enable early detection of chronic kidney disease and initiation of treatment with cardiovascular and renal benefits

    Development of Risk Prediction Equations for Incident Chronic Kidney Disease

    Get PDF
    IMPORTANCE Early identification of individuals at elevated risk of developing chronic kidney disease (CKD) could improve clinical care through enhanced surveillance and better management of underlying health conditions.OBJECTIVE To develop assessment tools to identify individuals at increased risk of CKD, defined by reduced estimated glomerular filtration rate (eGFR).DESIGN, SETTING, AND PARTICIPANTS Individual-level data analysis of 34 multinational cohorts from the CKD Prognosis Consortium including 5 222 711 individuals from 28 countries. Data were collected from April 1970 through January 2017. A 2-stage analysis was performed, with each study first analyzed individually and summarized overall using a weighted average. Because clinical variables were often differentially available by diabetes status, models were developed separately for participants with diabetes and without diabetes. Discrimination and calibration were also tested in 9 external cohorts (n = 2 253 540).EXPOSURES Demographic and clinical factors.MAIN OUTCOMES AND MEASURES Incident eGFR of less than 60 mL/min/1.73 m(2).RESULTS Among 4 441 084 participants without diabetes (mean age, 54 years, 38% women), 660 856 incident cases (14.9%) of reduced eGFR occurred during a mean follow-up of 4.2 years. Of 781 627 participants with diabetes (mean age, 62 years, 13% women), 313 646 incident cases (40%) occurred during a mean follow-up of 3.9 years. Equations for the 5-year risk of reduced eGFR included age, sex, race/ethnicity, eGFR, history of cardiovascular disease, ever smoker, hypertension, body mass index, and albuminuria concentration. For participants with diabetes, the models also included diabetes medications, hemoglobin A(1c), and the interaction between the 2. The risk equations had a median C statistic for the 5-year predicted probability of 0.845 (interquartile range [IQR], 0.789-0.890) in the cohorts without diabetes and 0.801 (IQR, 0.750-0.819) in the cohorts with diabetes. Calibration analysis showed that 9 of 13 study populations (69%) had a slope of observed to predicted risk between 0.80 and 1.25. Discrimination was similar in 18 study populations in 9 external validation cohorts; calibration showed that 16 of 18 (89%) had a slope of observed to predicted risk between 0.80 and 1.25.CONCLUSIONS AND RELEVANCE Equations for predicting risk of incident chronic kidney disease developed from more than 5 million individuals from 34 multinational cohorts demonstrated high discrimination and variable calibration in diverse populations. Further study is needed to determine whether use of these equations to identify individuals at risk of developing chronic kidney disease will improve clinical care and patient outcomes.</p

    The kidney failure risk equation:evaluation of novel input variables including eGFR estimated using the CKD-EPI 2021 equation in 59 cohorts

    Get PDF
    SIGNIFICANCE STATEMENT: The kidney failure risk equation (KFRE) uses age, sex, GFR, and urine albumin-to-creatinine ratio (ACR) to predict 2- and 5-year risk of kidney failure in populations with eGFR <60 ml/min per 1.73 m 2 . However, the CKD-EPI 2021 creatinine equation for eGFR is now recommended for use but has not been fully tested in the context of KFRE. In 59 cohorts comprising 312,424 patients with CKD, the authors assessed the predictive performance and calibration associated with the use of the CKD-EPI 2021 equation and whether additional variables and accounting for the competing risk of death improves the KFRE's performance. The KFRE generally performed well using the CKD-EPI 2021 eGFR in populations with eGFR <45 ml/min per 1.73 m 2 and was not improved by adding the 2-year prior eGFR slope and cardiovascular comorbidities. BACKGROUND: The kidney failure risk equation (KFRE) uses age, sex, GFR, and urine albumin-to-creatinine ratio (ACR) to predict kidney failure risk in people with GFR <60 ml/min per 1.73 m 2 . METHODS: Using 59 cohorts with 312,424 patients with CKD, we tested several modifications to the KFRE for their potential to improve the KFRE: using the CKD-EPI 2021 creatinine equation for eGFR, substituting 1-year average ACR for single-measure ACR and 1-year average eGFR in participants with high eGFR variability, and adding 2-year prior eGFR slope and cardiovascular comorbidities. We also assessed calibration of the KFRE in subgroups of eGFR and age before and after accounting for the competing risk of death. RESULTS: The KFRE remained accurate and well calibrated overall using the CKD-EPI 2021 eGFR equation. The other modifications did not improve KFRE performance. In subgroups of eGFR 45-59 ml/min per 1.73 m 2 and in older adults using the 5-year time horizon, the KFRE demonstrated systematic underprediction and overprediction, respectively. We developed and tested a new model with a spline term in eGFR and incorporating the competing risk of mortality, resulting in more accurate calibration in those specific subgroups but not overall. CONCLUSIONS: The original KFRE is generally accurate for eGFR <45 ml/min per 1.73 m 2 when using the CKD-EPI 2021 equation. Incorporating competing risk methodology and splines for eGFR may improve calibration in low-risk settings with longer time horizons. Including historical averages, eGFR slopes, or a competing risk design did not meaningfully alter KFRE performance in most circumstances

    Conversion of Urine Protein-Creatinine Ratio or Urine Dipstick Protein to Urine Albumin-Creatinine Ratio for Use in Chronic Kidney Disease Screening and Prognosis : An Individual Participant–Based Meta-analysis

    Get PDF
    Financial Support: The CKD-PC Data Coordinating Center is funded in part by a program grant from the U.S. National Kidney Foundation and the National Institute of Diabetes and Digestive and Kidney Diseases (R01DK100446). Various sources have supported enrollment and data collection, including laboratory measurements and follow-up, in the collaborating cohorts of the CKD-PC. These funding sources include government agencies, such as national institutes of health and medical research councils, as well as the foundations and industry sponsors listed in Supplemental Appendix 3 (available at Annals.org).Peer reviewedPostprin
    corecore