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Significance Statement 

The widely-used kidney failure risk equation (KFRE) predicts the 2- and 5-year the risk of kidney failure in 

populations with eGFR <60 ml/min/1.73 m2. We assessed whether predictive performance and 

calibration was acceptable in 59 cohorts when using the new CKD-EPI 2021 eGFR equation, and whether 

the KFRE could be improved with additional kidney/cardiovascular variables and accounting for the 

competing risk of death. The KFRE generally performed well using CKD-EPI 2021 eGFR. Adding previous 

eGFR slope and cardiovascular variables resulted in no improvement in performance. However, the KFRE 

showed systematic underprediction in eGFR 45-59 ml/min/1.73 m2, overprediction over the 5-year time 

frame for age ≥65 years, and underprediction for eGFR ≥60 ml/min/1.73 m2 (in which the KFRE was not 

intended for use). A new equation that incorporates a spline term for eGFR and the competing risk of 

death was slightly better calibrated in CKD Stage G3a, although inter-cohort variation persisted. In 

summary, the original KFRE is well calibrated using the CKD-EPI 2021 equation in most populations with 

eGFR <45 ml/min/1.73 m2. For populations with eGFR 45-59 ml/min/1.73 m2, a new equation can be 

used. Alternative equations should be used in eGFR ≥60 ml/min/1.73 m2. 
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Abstract: 

Background: The kidney failure risk equation (KFRE) uses age, sex, glomerular filtration rate (GFR), and 

urine albumin-to-creatinine (ACR) to predict the risk of kidney failure in people with GFR <60 

ml/min/1.73 m2. 

Methods: Using 59 cohorts from the CKD Prognosis Consortium, we tested several modifications to the 

KFRE: 1) using the CKD-EPI 2021 creatinine equation for eGFR; 2) substituting 1-year average ACR for 

single-measure ACR and 1-year average eGFR in participants with high eGFR variability; and 3) adding 2-

year prior eGFR slope and cardiovascular comorbidities. We also assessed calibration of the KFRE in 

subgroups of eGFR and age before and after accounting for the competing risk of death.  

Results: The KFRE remained accurate overall using CKD-EPI 2021 eGFR (median 2-year c-statistic 0.921 

(interquartile range [IQR], 0.903, 0.939); median 2-year calibration slope of 1.11 (IQR, 0.87-1.27)). There 

was no improvement in performance when using 1-year average ACR, using 1-year average eGFR among 

participants with high variability, adding previous 2-year eGFR slope, or adding cardiovascular variables 

(heart failure, coronary heart disease, atrial fibrillation, and stroke). The calibration of the KFRE was less 

good in the low-risk group of eGFR ≥45 ml/min/1.73 m2, and in older adults using the 5-year time 

horizon. We developed and tested a new model with a spline term in eGFR and incorporating the 

competing risk of mortality, which resulted in a median calibration slope of 0.834 (0.453-1.237) from 

1.944 (1.129-2.954) in the validation cohorts for eGFR 45-60 ml/min/1.73 m2 and 0.906 (0.436-1.102) 

from 0.735 (0.418-0.835) over 5 years in older adults.  

Conclusions: The original KFRE is accurate in eGFR <45 ml/min/1.73 m2 when using the CKD-EPI 2021 

equation, but calibration may be improved in low-risk settings with longer time horizons by 

incorporating competing risk methodology and splines for eGFR. Inclusion of historical averages, eGFR 
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slopes, or a competing risk design did not meaningfully alter the KFRE performance in most 

circumstances.  
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 Introduction 

 Accurate prediction of the risk of adverse kidney outcomes can facilitate shared decision-

making, enable risk-based care, and is an important priority for patients and physicians. Tangri et al. 

previously developed a kidney failure risk equation (KFRE) that uses demographic and laboratory data to 

predict the progression of chronic kidney disease (CKD) to kidney failure.1 The risk equation was 

validated in more than 30 countries and 700,000 participants and has been incorporated into electronic 

health records, reimbursement criteria, and clinical practice guidelines for CKD management.2-6 

 

The 4-variable KFRE incorporates age, sex, glomerular filtration rate (GFR) and albuminuria; however, a 

new GFR estimating equation (2021 CKD-EPI creatinine equation)7 is now recommended for use and has 

not been fully tested in the context of the KFRE. In addition, other identified risk factors may improve 

the accuracy of the KFRE or allow for implementation in broader populations. For example, the KFRE 

does not incorporate historical information on kidney function. The use of average recent 

measurements of kidney function or prior trajectory (slope) in estimated GFR (eGFR) may improve risk 

prediction. The presence of cardiovascular diseases such as coronary heart disease, atrial fibrillation, 

heart failure, and stroke – all relatively common in CKD – may affect risk estimates, as may accounting 

for the competing risk of all-cause mortality.8 Finally the performance of the KFRE has not been 

rigorously investigated within subgroups of eGFR and age. 

 

In order to address these questions, we conducted a multinational observational study of patients with 

CKD enrolled in the CKD Prognosis Consortium. For eGFR, we used the 2021 CKD-EPI creatinine 

equation. Our overall goal was to evaluate the original KFRE in diverse study populations, including by 

subgroup of age and eGFR, and improve upon its accuracy wherever possible.  
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Methods 

Study population 

Included cohorts were drawn from the CKD Prognosis Consortium, a global consortium of cohorts with 

data on kidney function and outcomes and at least 1000 participants (www.ckdpc.org).9 For the present 

study, cohorts were required to have at least two years of observation with at least two outpatient 

measures of eGFR prior to the index value, and at least two years of observation thereafter. In total, 59 

cohorts had adequate data and agreed to participate. Differences between the study population and 

that used in the original KFRE validation paper are highlighted in Appendix 1. All cohorts were used in 

analyses of existing equations. For the purpose of equation development, we divided cohorts into 

development and validation subsets, with development occurring in cohorts able to send data to the 

Data Coordinating Center as well as a random selection of 50% of the cohorts from OptumLabs® Data 

Warehouse (OLDW), and validation occurring in the remaining cohorts. Comparisons between newly 

developed equations and existing equations were performed in validation cohorts. The OLDW is a 

longitudinal, real-world data asset with de-identified administrative claims and electronic health record 

(EHR) data.10 

 

Procedures 

In all cohorts, eGFR was estimated using the CKD-EPI 2021 creatinine equation7 and serum or plasma 

creatinine. To mirror inputs available in clinical practice, prior eGFR slope was estimated using all 

outpatient creatinine measures and linear regression over the previous 1-, 2-, 3- and 5-years at the 

individual level rather than using mixed models in the population overall. Slopes were categorized as <-3 

http://www.ckdpc.org/
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ml/min/1.73 m2 per year, between -3 and -1 ml/min/1.73 m2, -1 to 1 ml/min/1.73 m2 per year, and >1 

ml/min/1.73 m2 per year. The category -1 to 1 ml/min/1.73 m2 per year was used as a reference. Other 

key variables included demographics and urine albumin divided by urine creatinine (ACR). For 

participants with measured urine protein-to-creatinine ratio (PCR) but not ACR, values were converted 

to ACR using the unadjusted conversion equation.11 In analyses including participants with only dipstick 

proteinuria measurement, urine protein was categorized as negative, trace, +, ++, and ≥+++, and values 

were converted to ACR.11 Other variables tested for inclusion were the following cardiovascular 

conditions: history of heart failure, history of coronary heart disease, atrial fibrillation, and history of 

stroke (Appendix 2). 

 

Outcomes 

The primary outcome was kidney failure, defined as the receipt of kidney replacement therapy (dialysis 

or kidney transplantation). Acute or temporary dialysis was not considered kidney failure. In analyses of 

competing events, all-cause mortality was simultaneously assessed.  

 

Predicting kidney failure in eGFR <60 ml/min/1.73 m2: Are new input variables needed? 

First, we estimated the time-dependent C-statistic and calibration of the KFRE in all cohorts using GFR 

estimated using the CKD-EPI 2021 creatinine equation in the population with quantified albuminuria as 

well as that where only urine dipstick protein was available. As a comparison, we performed the same 

analyses using the CKD-EPI 2009 equation.12 Time dependent C-statistics were estimated using the 

inverse probability of censoring weight; variance and covariance of the C-statistics were estimated by 

the jackknife method.13 We quantified calibration by plotting deciles of predicted vs. observed risk 
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(accounting for the competing risk of death) and estimating the slope (“calibration slope”) within each 

cohort. Perfect calibration has a slope of 1. We summarized model discrimination and calibration using 

the median and 25th-75th percentile across cohorts. Differences in C-statistics were estimated within 

each cohort and then summarized using random-effects meta-analysis. Cohort deviations from a 

calibration slope of 1 by >30% (i.e., calibration slope <0.7 or >1.43) were investigated through meta-

regression, considering average age, sex, eGFR, history of coronary heart disease, stroke, heart failure, 

atrial fibrillation, diabetes, hypertension, and median albuminuria as potential risk factors.  

 

Second, we evaluated whether using a potentially more precise estimate of ACR as an input would 

improve the performance of the original KFRE. For this analysis, we included all cohorts with participants 

with an index eGFR <60 ml/min/1.73 m2, a concomitant value of ACR, and at least one additional 

measurement of ACR in the year prior. In each cohort, we evaluated the C-statistic and calibration slope 

of the KFRE using ACR at the index date and compared it to that achieved with the KFRE estimated using 

the average ACR over the previous year.  

 

Third, we tested whether using average eGFR over the previous year as an input in the original KFRE 

would improve performance over that estimated solely with eGFR at the index date. For this analysis, 

we included all cohorts and participants with eGFR <60 ml/min/1.73 m2 and high variability in eGFR 

measurements over the previous year (defined as a standard deviation ≥4 ml/min/1.73 m2, 

approximately the top quartile for most cohorts), comparing C-statistic and calibration slope of the KFRE 

estimated using average eGFR to that using index eGFR as above.  
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Fourth, we evaluated whether adding previous eGFR slope to the KFRE variables would improve 

performance. To do this, we developed a model in the development cohorts, adding categories of eGFR 

slopes over 1, 2, 3, and 5-years prior to the index date, fitting a Cox model for kidney failure on age, sex, 

eGFR, and ACR along with the 4 eGFR slope categories (<-3 ml/min/1.73 m2 per year, between -3 and -1 

ml/min/1.73 m2, -1 to 1 ml/min/1.73 m2 per year, and >1 ml/min/1.73 m2 per year). We then meta-

analyzed coefficients to develop a new model of kidney failure. We tested the new model’s 

discrimination and calibration and compared it to that of the original KFRE in the validation cohorts.  

 

Fifth, we evaluated whether adding indicators of heart failure, coronary heart disease, atrial fibrillation, 

and stroke to the KFRE variables would improve risk estimation. Coefficients were estimated in each 

development cohort by adding variables to the model with KFRE variables and previous 2-year slope 

categories. We then meta-analyzed coefficients to develop a new model of kidney failure. We compared 

the C-statistic and calibration of the new model to that of the original KFRE within each validation 

cohort, summarizing across cohorts as above.  

 

Evaluating the performance of the KFRE by subgroups of age and eGFR: Is a competing risk model 

needed? 

We evaluated the performance of the original 4-variable KFRE for predicting kidney failure in 

participants stratified by eGFR (<30 ml/min/1.73 m2, 30 to <45 ml/min/1.73 m2, 45 to <60 ml/min/1.73 

m2, and, although the KFRE is not intended for this population, eGFR ≥60 ml/min/1.73 m2) as well as by 

subgroups of age (<65 years; ≥65 years).  
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Because we found that the original KFRE was poorly calibrated in the subgroup with eGFR 45 to <60 

ml/min/1.73 m2, as well as among older adults for the 5-year time horizon, we developed a new model 

in the development cohorts that incorporated age, sex, log-ACR, and a linear spline term for eGFR with a 

knot at 45 ml/min/1.73 m2 and accounted for the competing risk of mortality using the method of Fine 

and Gray.14 We then evaluated discrimination and calibration of the model in the validation cohorts, 

comparing discrimination and calibration with the original KFRE.  

 

All analyses were done in Stata version 14 (StataCorp) using complete case analysis. Statistical 

significance was determined using a 2-sided test with a threshold P value of <0.05.  

Data availability 

The CKD Prognosis Consortium has agreed with collaborating cohorts not to share data outside the 

consortium. Each participating cohort has its own policy for data sharing. 

 

Results 

Predicting kidney failure in eGFR <60 ml/min/1.73 m2: Novel inputs in the original KFRE 

Testing the 2021 CKD-EPI equation for eGFR in the original KFRE 

In the study population with eGFR <60 ml/min/1.73 m2 and available ACR, there were 59 cohorts 

included, with 312,424 participants and 20,728 kidney failure events (Table 1). Overall, mean age was 73 

years, and mean eGFR was 44 ml/min/1.73 m2 (eTable 1). The KFRE performed well when using the CKD-

EPI 2021 equation, with a median cohort 2-year c-statistic of 0.921 (25th percentile to 75th percentile, 

0.903-0.939) and calibration slope of 1.111 (0.872-1.272) (Figure 1A). The 5-year KFRE also had good 



14 
 

discrimination (C-statistic, 0.898, IQI, 0.883-0.919) and calibration (calibration slope 0.828, 0.736-1.031) 

(Figure 1B). There were eight (out of 58) cohorts with substantial overprediction (>30%) of the 2-year 

risk and six cohorts with substantial underprediction of the 2-year risk (eTable 2), but no cohort-level 

factor was associated with large miscalibration after accounting for multiple comparisons (eTable 3). For 

the 5-year KFRE, there were three out of 20 cohorts with substantial overprediction of risk and no 

cohorts with substantial underprediction; no cohort-level factor evaluated was associated with these 

deviations.  Compared to the new CKD-EPI 2021 eGFR equation for the eGFR variable, using the previous 

CKD-EPI 2009 eGFR resulted in slightly worse discrimination of the 2-year KFRE overall (difference in C-

statistic, -0.001, -0.001 to -0.001) and similar calibration (14 out of 58 cohorts with large deviations from 

a calibration slope closer to 1 using both equations) (Table 2, columns 1-3). Results were similar for the 

5-year KFRE. 

Testing historical eGFR or ACR in the original KFRE 

Among participants with at least one additional ACR measure in the year prior to the index date, using 

average ACR rather than index ACR did not improve the discrimination nor the calibration of the 2- and 

5-year KFRE (Table 2, column 4). Among participants with highly variable eGFR in the year prior to index 

date, using average eGFR rather than index eGFR negatively impacted the discrimination and calibration, 

particularly for the 2-year KFRE (Table 2, column 5).  

Testing the use of dipstick protein in the original KFRE  

In the study population with eGFR <60 ml/min/1.73 m2 and dipstick protein measures, mean age was 74, 

mean eGFR was 45 ml/min/1.73 m2, and 11% had dipstick values of ++ or greater (eTable 4). 

Discrimination and calibration of the KFRE using imputed ACR from these studies showed a median C-

statistic of 0.914 (0.902, 0.932) and slight underprediction of 2-year but not 5-year risk (Table 2, column 

6; eFigure 1).  
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Predicting kidney failure in eGFR <60 ml/min/1.73 m2: Introducing new variables into a modified KFRE 

Testing whether incorporating previous eGFR slope improves prediction of kidney failure 

Model development was conducted among 125,566 participants with available slope measures in the 

development cohorts. The median 1-, 2-, 3-, and 5-year slope was -3.7 ml/min/1.73 m2 per year, -2.8 

ml/min/1.73 m2 per year, -2.4 ml/min/1.73 m2 per year, and -2.1 ml/min/1.73 m2 per year (eTable 5, top 

half). When categories of slope were incorporated with the variables in the KFRE (age, sex, eGFR, ACR), 

slope <-3 ml/min/1.73 m2 per year had small but significant associations with kidney failure, with 

stronger associations when slopes were observed for at least 2 years (eTable 6). On an individual level, 

previous eGFR slope did not predict future eGFR slope (eTable 7).  

 

In the 187,234 participants in the validation cohorts, the new model that incorporated previous 2-year 

slope had a c-statistic of 0.923 (0.906, 0.943) and 0.896 (0.886, 0.938) for the 2-year and 5-year 

timeframe, respectively (Table 3). Calibration slope was 0.868 (0.647-0.955) for the 2-year model, with 

no suggestion of improvement over the original KFRE, and 0.725 (0.564-0.822) for the 5-year model. 

 

Testing whether incorporating history of cardiovascular diseases improves prediction of kidney failure 

When the additional indicators of heart failure, coronary heart disease, atrial fibrillation, and stroke 

were included in the model that incorporated 2-year eGFR slope, only heart failure had a statistically 

significant association with kidney failure (meta-analyzed hazard ratio, 1.21, 95% CI: 1.11-1.33) (Table 3, 

last column). The C-statistic of this model was 0.925 (0.907, 0.945) and 0.899 (0.887, 0.939) for the 2- 

and 5-year timeframe in the validation cohorts. Calibration slope was 0.883 (0.668-0.960) for the 2-year 
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model and 0.741 (0.558-0.834) for the 5-year model, suggesting overprediction in the majority of 

cohorts in both settings. 

 

Predicting kidney failure in subgroups of eGFR and age: the original KFRE 

The KFRE, which was developed for use in eGFR <60 ml/min/1.73 m2, performed poorly in eGFR ≥60 

ml/min/1.73 m2 (eTable 8-9). The median c-statistic of 0.750 (25th -75th percentile of cohorts, 0.725-

0.776) and there was systematic underprediction of 2- and 5-year risk (eFigure 2). The risk of kidney 

failure was extremely low in these cohorts, with the top quintile of participants having an observed risk 

of kidney failure of 0.1%-0.4% at 2 years and 0.2%-1.2% at 5 years. 

 

In subgroups of eGFR in participants with eGFR <60 ml/min/1.73 m2, there was also evidence of 

underprediction at higher levels of eGFR. Although the KFRE had high discrimination in all subgroups, 

the median calibration slope was 1.944 (1.129-2.954) for 2-year KFRE and 1.431 (1.256,1.988) for 5-year 

KFRE in the eGFR 45-59 ml/min/1.73 m2, 1.301 (0.810, 1.522) and 1.089 (0.864, 1.591) in the eGFR 30-44 

ml/min/1.73 m2, and 1.082 (0.858, 1.232) and 0.821 (0.711, 0.976) in the eGFR <30 ml/min/1.73 m2 

(Figure 2).  

 

By subgroups of age in participants with eGFR <60 ml/min/1.73 m2, the median (25th -75th percentile) 

cohort calibration slope was 1.154 (0.930, 1.279) for the 2-year KFRE and 0.953 (0.824, 1.063) for the 5-

year KFRE in ages younger than 65 years, and 1.072 (0.814, 1.270) and 0.766 (0.634, 0.965) for the 2- 

and 5-year KFRE in ages 65 and older (eTable 10). 
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Testing whether incorporating the competing risk of mortality and a nonlinear eGFR term improves 

prediction of kidney failure 

To test whether a competing risk model with a linear spline term for eGFR might improve calibration of 

the KFRE, we constructed a new model in the 31 development cohorts. Coefficients for age, sex, eGFR, 

and ACR were relatively similar to those of the original KFRE; however, the coefficient for eGFR above 45 

ml/min/1.73 m2 was much weaker than that for eGFR below 45 ml/min/1.73 m2 (Table 4). Overall, the 

median (25th, 75th percentile) cohort C-statistic for the 2-year and 5-year risk in the validation cohorts 

was 0.923 (0.913, 0.942) and 0.907 (0.896, 0.942) for the competing risk model, and the calibration 

slope was 1.002 (0.718, 1.107) and 0.837 (0.610, 1.058). 

 

Within subgroups of eGFR, the competing risk model improved the median cohort calibration in 

validation cohorts with eGFR 45-59 ml/min/1.73 m2, where the original KFRE had a median cohort (25th-

75th percentile) calibration slope of 1.944 (1.129, 2.954) and 1.431 (1.256, 1.988) for 2-year and 5-year 

timeframes and the corresponding values for the competing risk model were 0.834 (0.453, 1.237) and 

0.957 (0.722, 1.447) (Table 5). It also shifted calibration for the 5-year timeframe for older adults, with 

the original KFRE demonstrating a median calibration slope of 0.735 (0.418, 0.865) and the competing 

risk model showing a calibration slope of 0.906 (0.436, 1.102).  

 

 

Discussion 

In this multinational collaborative meta-analysis including >3 million individuals across 59 cohorts and 

more than 30 countries, we comprehensively evaluated the KFRE in the estimation of risk of kidney 
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failure. The KFRE remained accurate overall in the prediction of kidney failure in populations with eGFR 

<60 ml/min/1.73 m2 using the new CKD-EPI 2021 creatinine equation for estimating GFR. Performance 

of the KFRE was not improved when historical ACR or eGFR averages were substituted for index ACR and 

eGFR values, respectively, or with the inclusion of new variables, such as previous slopes of eGFR or 

additional cardiovascular comorbidities. However, when evaluated within subgroups, the KFRE 

underpredicted kidney failure risk at higher eGFR and, among participants over the age of 65 years, 

overestimated kidney failure risk over the 5-year timeframes. To address this issue, we developed a 

competing risk model with a non-linear term for eGFR. The new model demonstrated improved 

calibration in these subgroups for some cohorts, but there remained heterogeneity in absolute risk 

across cohorts. Taken together, these findings suggest that the previously developed KFRE is fairly 

generalizable to a variety of global settings; however, there is variation in local calibration, particularly in 

subgroups with higher eGFR. We suggest that the KFRE continue to be recommended, aligned with the 

CKD-EPI 2021 equation, and implemented in health systems and clinical encounters for patients with 

CKD Stages G3-G5; for more accurate prediction of risk in lower-risk settings, such as eGFR >45 

ml/min/1.73 m2, alternative equations or more common endpoints might be preferable.15, 16 

 

The current study investigates several previously suggested enhancements to the KFRE in a large 

number of global cohorts. A priori, we selected average ACR and average eGFR as alternatives to index 

ACR and index eGFR, and eGFR slope and cardiovascular as novel inputs. None resulted in meaningful 

improvements in discrimination or calibration in the validation cohorts. We demonstrate that local 

variation in absolute risk is substantial, highlighting the limitations of applying results from single cohort 

studies to an entire patient population. Indeed, previous efforts to develop alternative risk equations 

have not consistently outperformed the KFRE in external validation.17 Other studies have identified 

concerns with the use of the KFRE in patients with CKD Stage G4 at high risk of death, and we previously 
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developed an alternative equation that models several outcomes simultaneously in this population.8, 18 

Our new competing risk model also helps calibration among older adults over the 5-year timeframe, as 

well as in eGFR 45-60 ml/min/1.73 m2. Overall, however, the new model does not improve upon the 

original KFRE or address the variability in local calibration. These findings emphasize the need for 

implementation studies of the KFRE in health systems with local calibration where possible, given what 

appears to be the limited potential for improvement in accuracy in risk prediction for kidney failure in 

the CKD G3-G5 population with additional variables. 

 

The KFRE was inaccurate in patients with eGFR ≥60 ml/min/1.73 m2, a population in which it was not 

intended for use. In these individuals, the absolute risk of kidney failure is very low, even when the risk 

of other clinically meaningful outcomes such as a loss of 30-50% of kidney function may be high. As 

such, we recommend alternative equations, such as those to predict a ≥40% decline in eGFR. Given the 

recent success of SGLT2i in preventing/delaying the loss of eGFR in these populations,19-21 efforts to 

identify high-risk individuals early may lead to prevention or forestalling of kidney failure over a 

patient’s lifetime rather than simply a delay in disease progression.  

 

There are some limitations to our findings. First, we focused on validating and developing the equations 

in patients that had available measurements for eGFR and albuminuria. Given that patients with 

diabetes and those at higher risk of progression are more likely to have albuminuria measured in routine 

clinical settings, some cohorts may be biased due to an informative measurement process. However, it 

is important to note that our study also included cohorts where measurements were part of scheduled 

study visits, and we did not see any differences in accuracy. Second, while we tested the inclusion of 

several comorbidity-related variables in the KFRE and did not find meaningful improvement, we were 
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unable to test biomarkers such as cystatin C, neutrophil gelatinase-associated lipocalin (NGAL), or kidney 

injury molecule-1 (KIM1). These tests are not available in the vast majority of patients with CKD 

worldwide, and models incorporating these tests would therefore be difficult to implement. As cystatin 

C use increases in clinical settings, inclusion or substitution of cystatin C-based eGFR for creatinine-

based eGFR in the KFREs should be tested. Third, our sample size and follow-up was reduced by the 

requirement of a two-year lead-in period during which we could estimate eGFR slope, a novel input that 

did not improve the KFRE performance. These findings differ from results of surrogate endpoint 

analyses, which suggest that eGFR slope can serve as a valid surrogate endpoint for end-stage kidney 

disease. Surrogate endpoint analyses evaluate differences in eGFR at a group, not individual level, and 

adjust for initial eGFR value, not most recent eGFR value, and they include events that occur during the 

period of slope observation. Finally, our study provides a new competing risk-based KFRE which may  

improve calibration in certain cases, but it did not decrease the inter-cohort heterogeneity. Our 

definition of kidney failure is driven in part by provider-level decisions as to if and when to initiate 

kidney replacement therapy, which is almost certainly variable across providers, cohorts, and countries. 

The impact of including kidney failure receiving conservative care in the outcome was not addressable in 

this study.  

 

Strengths of this study include its large sample size and diversity in geography, ethnicity, and health 

system design. The evidence for generalizability provided in this study suggests that efforts to 

incorporate slopes and averages, or alternative statistical approaches to modeling kidney failure risk are 

less likely to improve model performance, and that efforts should instead be focused on knowledge 

translation, implementation, and local calibration as needed. We believe that this study provides 

sufficient and robust evidence that guidelines for CKD staging, diagnosis and management should 

endorse the implementation of the KFREs in clinical care.  
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In conclusion, the original KFRE using the 2021 CKD-EPI creatinine equation is accurate in most 

populations with eGFR <60 ml/min/1.73 m2, and is not improved by the inclusion of eGFR slopes or 

cardiovascular variables . The performance of the KFRE is less optimal in low-risk settings, such as CKD 

G3a. Health systems and researchers particularly interested in the low-risk population may wish to use 

an alternative equation or outcome for risk stratification. Randomized controlled trials and prospective 

studies evaluating the effect of implementing the KFREs in clinical practice are needed and ongoing. 
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Table 1. Characteristics of cohorts and participants with any quantitative measure of albuminuria and 
eGFR <60 ml/min/1.73m2 

 All Cohorts Cohorts Used in 
Development 

Cohorts Used in 
Validation 

Analytic purpose Evaluation of new 
inputs to existing 

equations 

Development of 
new equations 

Validation of new 
equations & 

comparison to KFRE 

# of cohorts 59 31 24 
# of participants 312,424 91,578 142,591 
Age 72 (11) 73 (11) 74 (11) 
% female 53% 54% 46% 
eGFR† 43 (13) 43 (13) 45 (12) 
ACR** 27 (10-107) 24 (9-93) 40 (18-147) 
Kidney failure events, N 20,197 6,230 7,138 
Kidney failure follow-up, y 4 (2) 4 (2) 4 (2) 
Slope <-3 ml/min/1.73 m2/year N/A 47% 53% 
-3 ml/min/1.73 m2/year ≤ slope < -1 
ml/min/1.73 m2/year 

N/A 18% 17% 

-1 ml/min/1.73 m2/year ≤ Slope < 1 
ml/min/1.73 m2/year 

N/A 16% 14% 

Slope ≥ 1 ml/min/1.73 m2/year N/A 19% 16% 
HF N/A 19% 22% 
CHD N/A 36% 32% 
Afib₤ N/A 16% 26% 
Stroke€ N/A 21% 11% 

 
ACR: urine albumin-to-creatinine ratio; Afib: atrial fibrillation; CHD: coronary heart disease; eGFR: 
estimated glomerular filtration rate; HF: heart failure 
 * Cohorts were required to have available 2-year eGFR slope, history of CHD, and history of heart failure 
to be included in the development and validation of the 2-year slope model. When atrial fibrillation or 
stroke information was not available at a cohort level, the variable was omitted in that cohort’s model 
development or validation. 
**Including urine protein-to-creatinine ratio that was converted to ACR.  
†Using the 2021 CKD-EPI creatinine equation 
₤ Afib is not available in 13 development cohorts, 2 validation cohorts 
€ Stroke is not available in 3 development cohorts 
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Table 2. Testing the performance of the original kidney failure risk equation when substituting inputs for eGFR and albuminuria 

 New CKD-Epi 2021 
Equation for eGFR 

Old CKD-Epi 2009 
Equation for eGFR 

Average 1-year ACR 
for ACR 

Average 1-Year eGFR 
in patients with high 
variability for eGFR 

Dipstick protein for 
ACR 

2-year Kidney Failure Risk Equation, All Available Cohorts 
N cohorts*** 58 58 45 53 44 
N participants 310,094 310,094 111,602 143,822 358,491 
N events 11,751 11,751 5,427 3,661 7,537 
Median Cohort C-
statistic, 25th – 75th 
percentile* 0.921 (0.903, 0.939) 0.919 (0.898, 0.939) 0.924 (0.877, 0.944) 0.890 (0.863, 0.927) 0.914 (0.902, 0.932) 
Median Cohort 
Calibration Slope, 
25th – 75th percentile 1.111 (0.872, 1.272) 1.025 (0.803, 1.177) 1.209 (1.018, 1.388) 1.615 (1.319, 1.953) 1.224 (1.012, 1.474) 
Cohorts with Large 
Deviations in 
Calibration Slope**  

 
8 overpredict 

6 underpredict 
10 overpredict 
4 underpredict 

3 overpredict 
9 underpredict 

1 overpredict 
33 underpredict 

 
3 overpredict 

13 underpredict 
5-Year Kidney Failure Risk Equation, All Available Cohorts 

N cohorts 20 20 17 19 12 
N participants 148,339 148,339 70,511 66,124 100,876 
N events 9,155 9,155 5,997 2,880 3,842 
Median Cohort C-
statistic, 25th – 75th 
percentile* 0.898 (0.883, 0.919) 0.897 (0.881, 0.918) 0.891 (0.882, 0.909) 0.888 (0.854, 0.920) 0.899 (0.864, 0.917) 
Median Cohort 
Calibration Slope, 
25th – 75th percentile 0.828 (0.736, 1.031) 0.779 (0.669, 0.988) 0.822 (0.756, 0.964) 1.005 (0.913, 1.241) 1.005 (0.800, 1.203) 
Cohorts with Large 
Deviations in 
Calibration Slope** 

 
3 overpredict 

0 underpredict 

 
5 overpredict 

0 underpredict 

 
3 overpredict 

0 underpredict 

 
2 overpredict 

3 underpredict 

 
2 overpredict 

1 underpredict 
*There was no statistically significant improvement in C-statistics compared to the KFRE using CKD-EPI creatinine 2021 for any of the input 
variables when tested in the same cohorts.  
**Large deviations defined as >30% difference, which is a ratio of <0.7 (overprediction) or >1.43 (underprediction). 
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***The ADVANCE cohort did not have sufficient number of events in the 2 year follow up to be included in analyses. 
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Table 3.  Testing the performance of new input variables in addition to the four variables present in the kidney failure risk equation 

Variable Original KFRE +2-year slope KFRE 2-year slope +CVD 
KFRE 

Age, 10y 0.80 (0.75, 0.86) 0.75 (0.72, 0.78) 0.74 (0.70, 0.77) 
Male 1.28 (1.04, 1.58) 1.30 (1.23, 1.37) 1.27 (1.20, 1.36) 
eGFR, 5ml 0.57 (0.54, 0.61) 0.58 (0.55, 0.61) 0.58 (0.56, 0.62) 
lnACR, mg/g 1.57 (1.44, 1.71) 1.51 (1.44, 1.58) 1.52 (1.46, 1.59) 
Slope <-3 ml/min/1.73 m2/year  1.32 (1.15, 1.52) 1.27 (1.09, 1.49) 
-3 ml/min/1.73 m2/year ≤ slope < -1 ml/min/1.73 m2/year  1.09 (0.95, 1.23) 1.06 (0.92, 1.23) 
Slope ≥ 1 ml/min/1.73 m2/year  1.04 (0.92, 1.19) 1.03 (0.87, 1.21) 
HF   1.21 (1.11, 1.33) 
CHD   1.06 (0.95, 1.18) 
Afib   0.97 (0.79, 1.18) 
Stroke   1.04 (0.95, 1.14) 

2-Year Risk Equations, Validation Cohorts 
N cohorts 24 24 24 
N participants 142,586 142,586 142,586 
N events 3,693 3,693 3,693 
Median Cohort C-statistic, 25th – 75th percentile* 0.925 (0.907, 0.943) 0.923 (0.906, 0.943) 0.925 (0.907, 0.945) 
Median Cohort Calibration Slope, 25th – 75th percentile 1.075 (0.817, 1.227) 0.868 (0.647, 0.955) 0.883 (0.668, 0.960) 
Cohorts with Large Deviations in Calibration Slope** 4 overpredict 

1 underpredict 
8 overpredict 

0 underpredict 
8 overpredict 

0 underpredict 
5-Year Risk Equations, Validation Cohorts 

N cohorts 8 8 8 
N participants 92,087 92,087 92,087 
N events 4,609 4,609 4,609 
Median Cohort C-statistic, 25th – 75th percentile* 0.903 (0.883, 0.937) 0.896 (0.886, 0.938) 0.899 (0.887, 0.939) 
Median Cohort Calibration Slope, 25th – 75th percentile 0.761 (0.578, 0.883) 0.725 (0.564, 0.822) 0.741 (0.558, 0.834) 
Cohorts with Large Deviations in Calibration Slope** 2 overpredict 

0 underpredict 
3 overpredict 

0 underpredict 
3 overpredict 

0 underpredict 
*There was no statistically significant improvement in C-statistics compared to the KFRE using CKD-EPI creatinine 2021.  
**Large deviations defined as >30% difference, which is a ratio of <0.7 (overprediction) or >1.43 (underprediction). 
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Table 4. Testing the addition of competing risk methodology and a linear spline term for eGFR with the four variables present in the kidney 
failure risk equation 

Variable Original KFRE Competing risk with spline 
term 

Age, 10y 0.80 (0.75, 0.86) 0.70 (0.66, 0.73) 
Male 1.28 (1.04, 1.58) 1.26 (1.19, 1.33) 
eGFR, below 45, per 5ml higher 0.57 (0.54, 0.61) 0.61 (0.58, 0.64) 
eGFR, above 45, per 5 ml higher 0.57 (0.54, 0.61) 0.83 (0.79, 0.86) 
lnACR, mg/g 1.57 (1.44, 1.71) 1.49 (1.42, 1.55) 

2-Year Risk Equations, Validation Cohorts 
N cohorts 24 24 
N participants 186,847 186,847 
N events 4,735 4,735 
Median Cohort C-statistic, 25th – 75th percentile* 0.925 (0.907, 0.943) 0.923 (0.913, 0.942) 
Median Cohort Calibration Slope, 25th – 75th percentile 1.075 (0.817, 1.227) 1.002 (0.718, 1.107) 
Cohorts with Large Deviations in Calibration Slope** 4 overpredict 

1 underpredict 
5 overpredict 

1 underpredict 
5-Year Risk Equations, Validation Cohorts 

N cohorts 8 8 
N participants 106,510 106,510 
N events 5,096 5,096 
Median Cohort C-statistic, 25th – 75th percentile* 0.903 (0.883, 0.937) 0.907 (0.896, 0.942) 
Median Cohort Calibration Slope, 25th – 75th percentile 0.761 (0.578, 0.883) 0.837 (0.610, 1.058) 
Cohorts with Large Deviations in Calibration Slope** 2 overpredict 

0 underpredict 
2 overpredict 

0 underpredict 
*There was no statistically significant improvement in C-statistics compared to the KFRE using CKD-EPI creatinine 2021.  
**Large deviations defined as >30% difference, which is a ratio of <0.7 (overprediction) or >1.43 (underprediction). 
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Table 5. Testing the addition of competing risk methodology and a linear spline term for eGFR with the four variables present in the kidney 
failure risk equation, within subgroups of eGFR and age 

Variable Original KFRE Competing risk with spline 
term 

2-Year Risk Equations, Validation Cohorts 
eGFR 45-59   
N cohorts 8 8 
N participants 87,924 87,924 
N events 312 312 
Median Calibration Slope, 25th – 75th percentile Overall 1.944 (1.129, 2.954) 0.834 (0.453, 1.237) 
Cohorts with Large Deviations in Calibration Slope* 1 overpredict 

5 underpredict 
3 overpredict 

2 underpredict 
eGFR 30-44   
N cohorts 12 12 
N participants 46,789 46,789 
N events 680 680 
Median Calibration Slope, 25th – 75th percentile Overall 1.300 (0.843, 1.471) 0.919 (0.674, 1.061) 
Cohorts with Large Deviations in Calibration Slope* 3 overpredict 

3 underpredict 
3 overpredict 

1 underpredict 
eGFR <30   
N cohorts 24 24 
N participants 22,151 22,151 
N events 3,612 3,612 
Median Calibration Slope, 25th – 75th percentile Overall 1.054 (0.808, 1.187) 0.975 (0.798, 1.178) 
Cohorts with Large Deviations in Calibration Slope* 5 overpredict 

1 underpredict 
5 overpredict 

1 underpredict 
Age <65   
N cohorts 22 22 
N participants 37,633 37,633 
N events 2,194 2,194 
Median Calibration Slope, 25th – 75th percentile Overall 1.113 (0.935, 1.234) 0.913 (0.693, 1.029) 
Cohorts with Large Deviations in Calibration Slope* 2 overpredict 

0 underpredict 
6 overpredict 

0 underpredict 
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Age 65+   
N cohorts 20 20 
N participants 145,704 145,704 
N events 2,495 2,495 
Median Calibration Slope, 25th – 75th percentile Overall 1.032 (0.814, 1.289) 1.093 (0.723, 1.314) 
Cohorts with Large Deviations in Calibration Slope* 4 overpredict 

1 underpredict 
4 overpredict 

2 underpredict 
5-Year Risk Equations, Validation Cohorts 

 

eGFR 45-59   
N cohorts 6 6 
N participants 57,828 57,828 
N events 499 499 
Median Calibration Slope, 25th – 75th percentile Overall 1.431 (1.256, 1.988) 0.957 (0.722, 1.447) 
Cohorts with Large Deviations in Calibration Slope* 0 overpredict 

3 underpredict 
1 overpredict 

2 underpredict 
eGFR 30-44   
N cohorts 7 7 
N participants 31,527 31,527 
N events 1,093 1,093 
Median Calibration Slope, 25th – 75th percentile Overall 0.864 (0.835, 1.116) 0.995 (0.802, 1.105) 
Cohorts with Large Deviations in Calibration Slope* 1 overpredict 

1 underpredict 
1 overpredict 

1 underpredict 
eGFR <30   
N cohorts 8 8 
N participants 14,976 14,976 
N events 3,550 3,550 
Median Calibration Slope, 25th – 75th percentile Overall 0.745 (0.586, 0.825) 0.820 (0.622, 0.912) 
Cohorts with Large Deviations in Calibration Slope* 2 overpredict 

0 underpredict 
2 overpredict 

0 underpredict 
Age <65   
N cohorts 8 8 
N participants 14,790 14,790 
N events 2,136 2,136 
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Median Calibration Slope, 25th – 75th percentile Overall 0.912 (0.745, 0.932) 0.863 (0.806, 0.938) 
Cohorts with Large Deviations in Calibration Slope* 0 overpredict 

0 underpredict 
1 overpredict 

0 underpredict 
Age 65+   
N cohorts 8 8 
N participants 91,720 91,720 
N events 3,020 3,020 
Median Calibration Slope, 25th – 75th percentile Overall 0.735 (0.418, 0.865) 0.906 (0.436, 1.102) 
Cohorts with Large Deviations in Calibration Slope* 4 overpredict 

0 underpredict 
3 overpredict 

0 underpredict 
*Large deviations defined as >30% difference, which is a ratio of <0.7 (overprediction) or >1.43 (underprediction). 
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Figure 1. Display of discrimination (dot plot) and calibration (spaghetti plot) for the 2-year (A) and 5-year (B) 4-variable KFRE in 
cohorts with eGFR <60 ml/min/1.73 m2 using the CKD-EPI 2021 creatinine equation for estimating GFR, all cohorts 

A) 
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B)  

 

*Each dot on the left-hand graph represents a cohort. Each line on the right represents a cohort, with observed vs. predicted risks 
plotted by decile of predicted risk. 
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Figure 2. Calibration slopes of the (A) 2-year and (B) 5-year kidney failure risk equation within subgroups of eGFR and age, all cohorts 

(A)  
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(B)
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*Each dot represents a cohort. A calibration slope of 1 represents perfect calibration. The gray shaded area represents a calibration slope within 
30% of 1 (<0.7 or >1.43). 
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