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ABSTRACT

Background: Chronic kidney disease (CKD) measures (estimated glomerular filtration rate [eGFR] and albu-
minuria) are frequently assessed in clinical practice and improve the prediction of incident cardiovascular
disease (CVD), yet most major clinical guidelines do not have a standardized approach for incorporating
these measures into CVD risk prediction. “CKD Patch” is a validated method to calibrate and improve the pre-
dicted risk from established equations according to CKD measures.
Methods: Utilizing data from 4,143,535 adults from 35 datasets, we developed several “CKD Patches” incorpo-
rating eGFR and albuminuria, to enhance prediction of risk of atherosclerotic CVD (ASCVD) by the Pooled
Cohort Equation (PCE) and CVD mortality by Systematic COronary Risk Evaluation (SCORE). The risk enhance-
ment by CKD Patch was determined by the deviation between individual CKD measures and the values
expected from their traditional CVD risk factors and the hazard ratios for eGFR and albuminuria. We then val-
idated this approach among 4,932,824 adults from 37 independent datasets, comparing the original PCE and
SCORE equations (recalibrated in each dataset) to those with addition of CKD Patch.
Findings: We confirmed the prediction improvement with the CKD Patch for CVD mortality beyond SCORE
and ASCVD beyond PCE in validation datasets (Ac-statistic 0.027 [95% CI 0.018-0.036] and 0.010
[0.007-0.013] and categorical net reclassification improvement 0.080 [0.032-0.127] and 0.056
[0.044-0.067], respectively). The median (IQI) of the ratio of predicted risk for CVD mortality with CKD Patch
vs. the original prediction with SCORE was 2.64 (1.89—3.40) in very high-risk CKD (e.g., eGFR 30—44 ml/min/
1.73m? with albuminuria >30 mg/g), 1.86 (1.48—2.44) in high-risk CKD (e.g., eGFR 45—59 ml/min/1.73m?
with albuminuria 30—-299 mg/g), and 1.37 (1.14—1.69) in moderate risk CKD (e.g., eGFR 60—89 ml/min/
1.73m? with albuminuria 30—299 mg/g), indicating considerable risk underestimation in CKD with SCORE.
The corresponding estimates for ASCVD with PCE were 1.55 (1.37-1.81), 1.24 (1.10-1.54), and 1.21
(0.98—1.46).
Interpretation: The “CKD Patch” can be used to quantitatively enhance ASCVD and CVD mortality risk predic-
tion equations recommended in major US and European guidelines according to CKD measures, when
available.
Funding: US National Kidney Foundation and the NIDDK.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Despite a body of evidence, major clinical guidelines do not
include uniform recommendations for incorporating CKD measures

Chronic kidney disease (CKD) affects more than 10% of adults
worldwide and increases the risk of many adverse outcomes [1].
Among these, cardiovascular disease (CVD) is particularly important
as the leading cause of death in persons with CKD [2]. A number of
studies have shown that the key measures of CKD, estimated glomer-
ular filtration rate (eGFR) and albuminuria, are strongly associated
with CVD outcomes and can statistically significantly improve the
risk prediction of incident CVD beyond traditional CVD risk factors
[3,4]. Importantly, eGFR and albuminuria are readily available in
many patients.

into CVD risk prediction. The American Heart Association (AHA) and
the American College of Cardiology (ACC) 2018 Cholesterol Guideline
recognizes eGFR <60 ml/min/1.73m?, but not albuminuria, as a “risk
enhancer” but does not specify how to quantitatively enhance the
CVD risk estimate. The European Society of Cardiology (ESC) 2016
CVD Prevention Guideline categorizes eGFR <30 ml/min/1.73m? in
general, or albuminuria in diabetes, as “very high-risk,” and eGFR
30-59 ml/min/1.73m? as “high-risk;” these designations are equiva-
lent to 10-year risk of CVD mortality of >10% and 5 to <10%, respec-
tively [5]. This approach does not account for other risk factors and
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Research in context

Evidence before this study

We searched PubMed on January 22, 2020 for articles relating
to the two key chronic kidney disease (CKD) measures (esti-
mated glomerular filtration rate [eGFR] and albuminuria) using
the following terms: ("glomerular filtration rate” or “GFR” or
"kidney function”) and (“albuminuria” or “proteinuria” or
“ACR” or “PCR” or “dipstick”) and ("cardiovascular events" or
"cardiovascular outcomes" or "cardiovascular mortality" or
"myocardial infarction" or “stroke” or "atherosclerotic cardio-
vascular disease") and (“prediction” or “discrimination” or “cal-
ibration” or “c-statistic” or “net reclassification”). Also, we
sought feedback on relevant articles form co-authors. Although
we found several studies reporting that these CKD measures
improved cardiovascular risk prediction, we did not find any
studies displaying a specific approach to incorporate CKD meas-
ures into established risk prediction models in major clinical
guidelines (i.e., the Pooled Cohort Equation [PCE] and SCORE).

Added value of this study

Utilizing data from 4,143,535 adults from 35 datasets, we
developed several CKD Patches (tools to enhance predicted risk
according to the deviation between an individual’'s CKD meas-
ures and the values expected from their traditional CVD risk
factors and the hazard ratios for eGFR and albuminuria) incor-
porating eGFR and albuminuria, to enhance prediction of risk of
atherosclerotic cardiovascular disease (ASCVD) by PCE and CVD
mortality by SCORE. In 37 validation datasets including
4,932,824 adults, CKD Patch improved the prediction for CVD
mortality beyond SCORE and ASCVD beyond PCE (Ac-statistic
0.027 [95% CI 0.018—0.036] and 0.010 [0.007—-0.013] and cate-
gorical net reclassification improvement 0.080 [0.032-0.127]
and 0.056 [0.044—0.067], respectively). In very high risk CKD
(e.g., eGFR 30—44 ml/min/1.73m? with urine albumin-to-creati-
nine ratio >30 mg/g), the median (IQI) ratio of risk prediction
according to the CKD Patch compared to the original equations
was 1.55 (1.37-1.81) for ASCVD and 2.64 (1.89-3.40) for CVD
mortality.

Implications of all the available evidence

The CKD Patch approach to incorporating eGFR and albumin-
uria into CVD risk prediction can be used to quantitatively
enhance ASCVD and CVD mortality risk prediction equations
recommended in major US and European guidelines. Risk pre-
diction incorporating CKD measures is available online for PCE
(http://ckdpcrisk.org/ckdpatchpce/) and SCORE  (http://
ckdpcrisk.org/ckdpatchscore/) and can guide clinical decision
making for CVD prevention therapies and physician-patient
discussion of CVD predicted risk when these CKD measures are
readily available.

therefore may misclassify the risk. Furthermore, this ESC Guideline
does not address albuminuria in those without diabetes as a predictor
of CVD risk [6].

Importantly, both AHA/ACC and ESC Guidelines have their own
risk prediction equations (the Pooled Cohort Equation [PCE] and Sys-
tematic COronary Risk Evaluation [SCORE], respectively), which are
widely used in primary care settings to guide CVD preventive thera-
pies (e.g., statins). Because CKD measures were not evaluated in the
dataset from which PCE and SCORE were derived, these measures
cannot be simply incorporated into these risk prediction equations.

To overcome this limitation and enable evidence-based inclusion
of eGFR and albuminuria into established CVD risk prediction equa-
tions, we meta-analyzed datasets in the CKD Prognosis Consortium
(CKD-PC). By applying our previously reported “Predictor Patch”
method [7], we developed and validated several “CKD patches” to
enhance the predicted CVD risk calculated from PCE and SCORE
according to CKD measures. Developing CKD Patches in this meta-
analysis which includes ~9 million adults from 72 datasets from vari-
ous countries has the key advantage of improved generalizability.

2. Methods

This study was approved for use of de-identified data by the insti-
tutional review board at the Johns Hopkins Bloomberg School of Pub-
lic Health, Baltimore, Maryland, USA (#IRB00003324). The need for
informed consent was waived by the institutional review board.

2.1. Study populations

We included 72 cohorts in the CKD-PC with available data in the
present study. The details of CKD-PC are described elsewhere [8], but
in brief, this consortium included both research cohorts and health
system datasets, with participants from 41 countries from North
America, Europe, the Middle East, Asia, and Australia. These cohorts
included general population, high-risk (specifically selected for clini-
cal conditions, such as diabetes), and CKD (exclusively enrolling indi-
viduals with CKD) cohorts. We studied participants aged 30 years or
older without prevalent CVD at baseline. Each cohort was required to
be informative, defined as having at least four years of follow-up
among 75% of participants and at least 50 incident CVD outcomes of
interest.

2.2. CKD measures

We explored the two key measures of CKD used in nephrology
clinical guidelines, and readily available in most clinical set-
tings—eGFR and albuminuria [9]. eGFR was calculated by the CKD
Epidemiology Collaboration creatinine equation [10]. Albuminuria
was primarily measured as spot urine albumin-to-creatinine ratio
(ACR), as recommended in clinical guidelines [9], with secondary
analyses utilizing dipstick proteinuria as an alternative measure.

2.3. Traditional CVD predictors

We considered those factors included in either of PCE or SCORE as
traditional predictors: age, sex, race, smoking status (current vs. non-
current), diabetes, systolic blood pressure, antihypertensive medica-
tion use, total cholesterol, and high-density lipoprotein cholesterol
[11,12].

2.4. CVD outcomes

CVD outcomes of interest were incident atherosclerotic CVD
(ASCVD) and CVD mortality, as evaluated by PCE and SCORE, respec-
tively [11,12]. ASCVD included coronary heart disease (CHD) (myo-
cardial infarction and fatal CHD) and stroke as a composite outcome
[11]. Consistent with the SCORE model, we analyzed CHD mortality
and non-CHD CVD mortality separately [12]. Details about how each
cohort defined ASCVD and CVD mortality are summarized in Web
Appendix 1.

2.5. Statistical analysis
All analyses were performed using STATA 14 (College Station, TX)

and based on complete data. Cohort characteristics were descrip-
tively compared. As in prior CKD-PC studies [4,13], we analyzed each
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cohort separately and then pooled the estimates using random-
effects models.

Among the 72 cohorts, 35 cohorts were selected as development
datasets because they were able to share de-identified individual-
level data with the CKD-PC Data Coordinating Center and repre-
sented a broad range of populations, including the general popula-
tion. The remaining 37 cohorts were either unable to share
individual-level data or included highly selected samples (e.g., per-
sons with CKD), and were thus considered validation datasets. One
exception was the OptumLabs® Data Warehouse (OLDW) datasets;
half were randomly selected to be validation datasets in order to
have good representation of health system databases in validation.

We first evaluated the performance of the original PCE and SCORE
(both versions of low-risk countries and high-risk countries) in our
development datasets. We then developed the “CKD Patch,” which
contains both eGFR and albuminuria, in the development datasets
using a published method [7]. Briefly, there are three steps in the
development of the CKD Patch: 1) a linear regression equation was
developed to estimate “expected” values of eGFR and log-ACR condi-
tional on the traditional CVD predictors defined above; 2) hazard
ratios for the CVD outcomes of interest were estimated for eGFR
(with linear spline terms and knots at 60 and 90 ml/min/1.73m?
[major thresholds of CKD vs. no CKD and reduced vs. normal eGFR,
respectively]) [9] and log-ACR, adjusted for the traditional CVD pre-
dictors; and 3) the CVD risk estimate was multiplied by the deviation
between observed and expected eGFR and log-ACR and their hazard
ratios for each individual. In the second step, log hazard ratios for the
traditional CVD predictors were fixed according to the original PCE
[11] or SCORE [12] coefficients. To match the method used in each
original equation, we used Cox models with follow-up time as a
time scale for the analysis of ASCVD as in PCE [11] and Weibull
models with age as a time scale for the analysis of CVD mortality
as in SCORE [12].

The original idea of the “CKD Patch” was to incorporate eGFR and
ACR simultaneously [7]. However, to reflect current clinical settings
where eGFR is more commonly available than albuminuria, we first
developed the GFR Patch. Subsequently, the ACR Patch was added to
the GFR Patch, comprising a “CKD Patch.” As a sensitivity analysis, we
also developed CKD Patch including eGFR and dipstick proteinuria.

The improvement of an established risk equation through the use
of additional predictors was predicated on the assumption that the
original equation is well calibrated in the cohort of interest (namely,
additional predictors generally cannot fix poorly calibrated predic-
tion models). Thus, we evaluated the addition of the various
“Patches” after recalibration in each cohort (i.e., calibrating the base-
line risk at average levels of predictors and accounting for different
average levels among relevant populations) [14]. In CKD cohorts,
since expected values from non-CKD cohorts at given levels of tradi-
tional predictors were found to overestimate eGFR and underesti-
mate albuminuria, instead of intercept from the linear regression
model from the development datasets, we centered expected eGFR
and albuminuria at the cohort-specific average.

To evaluate prediction performance in the validation cohorts, we
assessed the following: a calibration plot (predicted vs. observed
risk) [15], Harrel’s c-statistic (a measure of risk discrimination
accounting for censoring) [16], and categorical net reclassification
improvement (NRI) [17]. The 95% confidence intervals of c-statistics
and NRI were calculated using a normal approximation.

2.6. Role of the funding source

The funders had no role in the study design, data collection, analy-
sis, data interpretation, or writing of the report. KM and JC had full
access to all analyses and all authors had final responsibility for the
decision to submit for publication, informed by discussions with col-
laborators.

3. Results
3.1. Study characteristics

The present study included 9,076,359 adults from 72 datasets
(4,143,535 adults from 35 development datasets and 4,932,824
adults from 37 validation datasets) (Table 1 and Web Table 1). Mean
age within datasets ranged from 44 to 80 years, and most cohorts
included 50—-60% women. The majority (78%) were White adults, but
there were 790,095 (8.7%) Black adults (predominantly from US),
613,727 (6.8%) Asian adults (mainly from Asia), and 319,214 (3.5%)
Hispanic adults. Of these 72 datasets, 58 contributed to the analysis
of ASCVD and 34 contributed to the analysis of CVD mortality.

Predictor profiles varied considerably across cohorts among the
development datasets. For example, the prevalence of antihyperten-
sive medication use ranged from 17% to 77%, which was related to
cohort mean age (Pearson correlation 0.76). Datasets from Asia and
some from Europe had higher proportions of current smokers than
other datasets. Although several validation datasets had a high bur-
den of risk factors by design (e.g., 100% diabetes in a few datasets),
the summary characteristics were similar between development
datasets and validation datasets.

3.2. Performance of the PCE and score

Baseline survival free of ASCVD across the development datasets
is summarized in Web Table 2. Almost all cohorts had higher baseline
ASCVD-free survival than the original baseline survival from the PCE,
indicating overestimation of ASCVD risk by PCE in these datasets.
Indeed, calibration plots confirmed overestimation of ASCVD by PCE
in most datasets (Web Fig. 1). Generally, a similar pattern was
observed for CVD mortality with SCORE high-risk country calibration
(Web Table 3 and Web Fig. 2). On the other hand, SCORE for low-risk
countries tended to underestimate CVD mortality in our datasets. For
both ASCVD and CVD mortality, baseline survival varied across base-
line calendar years (Web Fig. 3).

Once we had recalibrated each equation to each of our datasets,
both PCE and SCORE were relatively well calibrated (Web Figs. 1A-C
and 2A-C). The pooled c-statistic of PCE was 0.759 (IQI 0.737-0.787)
and of SCORE was 0.795 (0.687-0.836), in the development datasets
(Web Tables 4 and 5).

3.3. Development of CKD patch

Based on spline models, lower eGFR levels below 60 ml/min/
1.73 m? were independently associated with increased risk of ASCVD
and CVD mortality in the development datasets (Table 2 and Web
Fig. 4). However, lower eGFR levels in the range of eGFR >90 ml/min/
1.73m? were associated with decreased risk for both ASCVD and CVD
mortality, indicating a known reverse J-shaped association between
eGFR and these CVD outcomes likely resulting from an association
between frailty and low muscle mass [3]. Higher ACR was linearly
associated with both ASCVD and CVD mortality. Elevated dipstick
proteinuria categories were associated with higher ASCVD risk, but
were less consistent for CVD mortality. Overall, as reported previ-
ously [3], both eGFR and ACR demonstrated stronger associations
with CVD mortality than with ASCVD.

In the linear regression models to estimate “expected” levels of
CKD measures, age, total cholesterol, high-density lipoprotein choles-
terol, systolic blood pressure, the use of antihypertensive medication,
current smoking, diabetes, and black race were all statistically signifi-
cantly associated with eGFR levels (Web Table 6). ACR was also asso-
ciated with all of these factors except black race. Gender was
associated with ACR but not eGFR. The models for estimating
“expected” eGFR and log-ACR were similar in datasets used for devel-
oping the “CKD Patch” for ASCVD and CVD mortality (Web Table 6).
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Baseline characteristics for development and validation datasets.

Study N Age(SD),y  Female%  eGFR(SD), ml/min/1.73m? N, ACR ACR (IDI), mg/g* N, Urine Dipstick Dipstick >1+, %
Development datasets

Aichi 4701 49(7) 21 100 (13) 4543 (97%) 2.25
ARIC 10,056 63 (6) 59 87(16) 9969 (99%) 4(2-7)

AusDiab 8234 52(13) 56 86 (15) 8229 (100%) 5(4-8)

BIS 1625 80(7) 54 65(17) 1622 (100%) 10(5-30) 1611 (99%) 15.99
China NS 33,448 50(12) 59 99(16) 33,448 (100%) 7(3-15) 32,946 (98%) 4.58
CIRCS 4083 53(9) 47 93(14) 4083 (100%) 3.23
COBRA 1008 53(11) 63 98 (20) 1006 (100%) 6(4-15)

ESTHER 4908 62 (7) 57 84(20) 4806 (98%) 10.24
Framingham 2837 59 (10) 55 89(19) 2837 (100%) 6(3-15)

Geisinger 313,550 53(14) 55 88(20) 67,068 (21%) 9(4-25)

Gubbio 4246 53(14) 56 85(15) 1620 (38%) 9(4-14)

Maccabi 1088,168  49(14) 55 98(18) 280,759 (26%) 15(9-32)

MESA 6757 62 (10) 53 83(17) 6747 (100%) 5(3-11)

Mt Sinai BioMe 14,380 54(13) 61 82(24) 4903 (34%) 11 (4-51)

NHANESIII 10,889 53(16) 54 95(22) 10,666 (98%) 6(4-13)

NHANEScon 27,277 53(15) 52 90 (22) 27,047 (99%) 7(4-13)

Ohasama 1486 63(9) 66 96 (13) 1479 (100%) 7.30
OLDW cohort 1 210,841 54 (14) 59 86(19) 35,008 (17%) 11 (6-30) 63,701 (30%) 8.94
OLDW cohort 2 171,715 57 (14) 55 84(19) 26,458 (15%) 12 (6-30) 48,289 (28%) 10.20
OLDW cohort 3 153,271 54(14) 58 89(18) 28,061 (18%) 8(4-19) 103,707 (68%) 9.30
OLDW cohort 4 466,471 55(14) 55 86 (20) 88,129 (19%) 12 (7-30) 162,156 (35%) 9.41
OLDW cohort 5 33,817 55(14) 59 84(20) 3786 (11%) 9(4-27) 13,676 (40%) 5.09
OLDW cohort 6 86,466 50(11) 60 95 (21) 27,277 (32%) 12 (6-37) 20,556 (24%) 11.98
OLDW cohort 7 95,085 57 (15) 58 82(21) 14,124 (15%) 9(5-23) 58,470 (61%) 7.07
OLDW cohort 8 113,743 53(13) 59 90 (20) 16,208 (14%) 12 (6-34) 24,658 (22%) 6.08
OLDW cohort 9 206,645 56 (14) 56 86 (20) 40,149 (19%) 9(5-25) 68,465 (33%) 9.26
OLDW cohort 10 101,483 56 (14) 58 85(20) 17,601 (17%) 9(5-25) 26,954 (27%) 6.10
OLDW cohort 11 36,724 53(13) 60 88(20) 5631 (15%) 12 (6-28) 11,573 (32%) 7.97
OLDW cohort 12 125,067 53(13) 55 87(20) 18,885 (15%) 11(6-29) 31,132 (25%) 10.66
OLDW cohort 13 782,375 54(13) 57 87(20) 107,390 (14%) 9(5-26) 251,414 (32%) 10.72
PREVEND 6105 50(12) 55 96 (16) 6101 (100%) 7(5-13)

Rancho Bernardo 1305 70(12) 62 66 (16) 1301 (100%) 6(3-13)

Takahata 3262 62 (10) 56 99 (12) 3246 (100%) 9(6-18) 3257 (100%) 448
Tromso 10,525 60 (8) 58 92(12) 10,277 (98%) 4(3-7) 10,252 (97%) 0.86
ULSAM 982 71(1) 0 76 (11) 975 (99%) 8(5-17)

Total 4143,535 53 (14) 56 90 (20) 906,528 (22%) 15(9-32) 947,728 (23%) 9.28
Validation datasets

ADVANCE 8412 66 (6) 46 78 (17) 8070 (96%) 15(7-38)

CARDIA 4409 37(5) 55 108 (23) 4364 (99%) 4(3-7)

CHS 2399 78 (5) 64 67 (16) 2105 (88%) 9(5-20)

CRIC 2757 57 (11) 47 46 (16) 2631 (95%) 42 (8-419)

GCKD 3687 60 (11) 44 50(18) 3670 (100%) 54 (10-425)

Hong Kong CKD 326 60(12) 46 18(7)

IPHS 92,345 59 (10) 66 86 (14) 92,060 (100%) 2.32
JHS 2652 50(11) 63 99 (20) 1831 (69%) 6(4-10)

LCC 10,248 76 (10) 65 52(13) 4792 (47%) 9(4-31)

NEFRONA 1259 60 (11) 40 33(17) 864 (69%) 91 (12-409)

NIPPON DATA80 8826 50 (13) 56 88(17) 8815 (100%) 2.64
NIPPON DATA90 7497 52(14) 59 98 (16) 7396 (99%) 2.50
OLDW cohort 14 84,265 56 (13) 59 82(19) 11,334 (13%) 14 (7-34) 20,286 (24%) 10.27
OLDW cohort 15 90,051 56 (14) 60 87(21) 15,170 (17%) 10(5-28) 39,295 (44%) 10.00
OLDW cohort 16 468,725 53(13) 58 90(21) 49,449 (11%) 13 (6-30) 186,746 (40%) 8.52
OLDW cohort 17 24,549 56 (13) 59 84(20) 3271 (13%) 13 (7-36) 10,388 (42%) 11.09
OLDW cohort 18 95,738 53(13) 59 88(18) 15,948 (17%) 8(4-22) 29,246 (31%) 10.61
OLDW cohort 19 360,879 54(13) 55 86 (19) 53,235 (15%) 10(5-27) 93,155 (26%) 9.65
OLDW cohort 20 94,596 55(13) 52 83(19) 12,709 (13%) 12(6-32) 30,997 (33%) 8.86
OLDW cohort 21 204,861 55(14) 57 85(19) 23,498 (11%) 11(6-28) 72,462 (35%) 10.25
OLDW cohort 22 136,301 54 (14) 51 86(19) 20,044 (15%) 10(5-29) 44,190 (32%) 5.75
OLDW cohort 23 90,989 54(13) 56 88(19) 11,269 (12%) 13(7-32) 18,561 (20%) 8.32
OLDW cohort 24 95,652 52(12) 56 88(18) 11,002 (12%) 8(4-23) 34,707 (36%) 11.65
OLDW cohort 25 749,323 55(14) 57 85(19) 92,450 (12%) 13(6-37) 195,854 (26%) 9.09
OLDW cohort 26 84,918 54 (14) 58 89(22) 17,014 (20%) 9(4-28) 25,666 (30%) 10.32
OLDW cohort 27 32,485 51(14) 55 90(18) 5038 (16%) 8(4-20) 6839 (21%) 10.51
RCAV 1425737  61(13) 7.3 82(17) 386,160 (27%) 9(4-29)

REGARDS 21,773 65(9) 58 86(19) 1146 (100%) 7(4-14)

RENAAL 1146 60 (8) 39 41(13) 21,270 (98%) 1283 (568-2631)

SEED 8390 58(10) 52 85(19) 6050 (72%) 13(7-27)

SKS 1585 64 (14) 40 34(17)

SMART 5427 54(12) 45 87(19) 2975 (55%) 10(5-25)

Sunnybrook 1727 64 (16) 43 52(28) 1149 (67%) 80 (17-346) 722 (42%)

TaiwanM] 319,400 45(12) 50 91(16) 315,680 (99%) 6.94
TLGS 10,148 44(12) 56 80(15) 5797 (57%) 273

(continued)
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Table 1 (Continued)

Study N Age(SD),y  Female%  eGFR(SD), ml/min/1.73m? N, ACR ACR (IDI), mg/g* N, Urine Dipstick Dipstick >1+, %
UK Biobank 378,133 57(8) 55 91(13) 367,315 (97%) 6(4-10)
ZODIAC 1209 67 (12) 60 68 (17) 1183 (98%) 2(1-6)
Total 4932,824  56(14) 42 86 (19) 1,157,006 (23%) 9(4-29) 1,238,862 (25%) 7.92
* N for ACR or dipstick are a subset of the cohorts. ACR: urine albumin to creatinine ratio; eGFR: estimated glomerular filtration rate.
Table 2
Meta-analyzed hazard ratios (95% CI) in development datasets.
Variables ASCVD Fatal CHD non-CHD CVD mortality
eGFR patch
eGFR <60, —15 ml 1.30(1.26,1.35)  1.72(1.46, 2.04) 1.61(1.31, 1.98)
eGFR 60-90, —15 ml 0.91(0.88,0.94) 1.08(0.96, 1.22) 1.09 (1.01,1.17)
eGFR 90+, —15 ml 0.71(0.66,0.75)  0.75(0.67, 0.83) 0.80 (0.66, 0.95)
ACR patch on top of eGFR patch
ACR, 8 fold 1.34(1.28,141) 1.60(147,1.74) 1.67 (1.51, 1.86)
Dipstick patch on top of eGFR patch
Dipstick trace 1.28(1.22,1.34)  0.80(0.55,1.18) 1.33(0.87,2.01)
Dipstick + 1.50(1.38,1.63) 2.16(1.17,3.98) 1.51(1.13,2.03)
Dipstick ++ 1.93(1.74,2.13)  1.91(0.99, 3.67) 3.26 (1.98, 5.39)
Dipstick +++ 2.18(1.98,2.41) 4.03(1.44,11.29) 5.07(0.71,36.02)
ACR: urine albumin to creatinine ratio; ASCVD: atherosclerotic cardiovascular disease; CHD: coronary heart dis-
ease; CVD: cardiovascular disease; eGFR: estimated glomerular filtration rate.
Bold indicates statistical significance at p<0.05.
Table 3
C-statistics and NRI for ASCVD and CVM in validation datasets.
ASCVD CVM
eGFR patch CKD patch eGFR patch CKD patch
N 4,489,273 1,153,790 875,693 419,732
Base C-statistic (IQI) 0.755 (0.698, 0.772) 0.687 (0.665, 0.726) 0.711(0.621, 0.790) 0.680 (0.569, 0.732)
AC-statistic (95% CI) 0.002 (0.001, 0.002) 0.010(0.007,0.013) 0.008 (0.005, 0.011) 0.027 (0.018, 0.036)
Categorical NRI (95% Cl) cut point at 7.5%, 20% for Overall 0.039 (0.031, 0.047) 0.056 (0.044, 0.067) 0.035 (0.013, 0.056) 0.080 (0.032, 0.127)
ASCVD, 5% and 10% for CVM Event 0.059 (0.050, 0.068) 0.084 (0.066, 0.102) 0.070 (0.046, 0.094) 0.065 (0.007, 0.123)
Non-event —0.020 (-0.023, -0.017) -0.016(-0.027, —0.005) —0.028 (—0.033, —0.023) 0.037 (—0.007, 0.080)

ASCVD: atherosclerotic cardiovascular disease; CKD: chronic kidney disease; CVM: cardiovascular mortality; eGFR: estimated glomerular filtration rate; NRI: net reclassification

Risk ratio of ASCVD
"patch" to recalibrated

Risk ratio CVM "patch" to
recalibrated SCORE

1.21 (0.98, 1.46)
1.24 (1.10, 1.54)

1.37 (1.14, 1.69)
1.86 (1.48, 2.44)

improvement.
CKD stages risk heat map
ACR CKD Stages
eGFR <30 30-299 300+ Risk ratio, Median (lQl)
60-89 CKD at moderate risk
45-59 CKD at high risk
30-44
<30

Fig. 1. Enhancement of ASCVD and CVM risk by CKD status. ACR: urine albumin to creatinine ratio; ASCVD: atherosclerotic cardiovascular disease; CKD: chronic kidney disease;
CVM: cardiovascular disease mortality; eGFR: estimated glomerular filtration rate. eGFR in ml/min/1.73m? and ACR in mg/g.

Using these estimates, we constructed the “CKD Patch” for ASCVD
and CVD mortality separately.

3.4. Performance of CKD patch in validation datasets

Among 29 validation datasets (n = 4489,273) with ASCVD data, the
GFR Patch did not alter model calibration (Web Fig. 1B-C) but slightly
improved the c-statistic by 0.002 (95% CI 0.001—-0.002) compared to
recalibrated PCE (Table 3 and Web Table 7). The improvement was
more evident with the CKD Patch (including eGFR and ACR) (Ac-sta-
tistic 0.010 [0.007—-0.013]). Of 29 datasets, only four showed a lower
c-statistic with CKD Patch, but none of these reached statistical

significance. On the other hand, 16 datasets showed a statistically sig-
nificant improvement of risk discrimination. NRI was statistically sig-
nificantly positive (indicating improved reclassification) for both the
GFR Patch (0.039 [0.031, 0.047]) and the CKD Patch (0.056 [0.044,
0.067]) (Web Table 8).

The improvement in risk prediction with the GFR Patch and
the CKD Patch (with eGFR and ACR) was also observed in the 17
validation datasets (n=875,693) for CVD mortality data (Table 3
and Web Table 7). Ac-statistic was 0.008 (0.005-0.011) for the
GFR Patch and 0.027 (0.018-0.036) for the CKD Patch. NRI was
0.035 (0.013-0.056) for GFR Patch and 0.080 (0.032-0.127) for
CKD Patch. (Web Table 8).
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The CKD Patch with eGFR and dipstick proteinuria also improved
prediction of ASCVD and CVD mortality in the validation datasets
(Web Tables 9 and 10). Improvements in validation cohorts were
similar to those in the development cohorts (Web Tables 11 and 12).

3.5. Absolute risk estimates using the CKD patch with the PCE or score
equations

We compared predicted risk with and without the CKD Patch
(available at http://ckdpcrisk.org/ckdpatchpce/ and http://ckdpcrisk.
org/ckdpatchscore/) (equations in Web Table 13) for recalibrated risk
estimates by PCE for ASCVD and by SCORE for CVD mortality in the
validation datasets (Fig. 1). The CKD Patch enhanced the predicted
CVD risk in participants with lower eGFR and higher albuminuria. For
example, across cohorts, the median ratio (IQI) of the ASCVD risk by
PCE with the CKD Patch to ASCVD risk by PCE without the CKD Patch
was 1.55 (1.37—1.81) in CKD at very high risk (e.g., eGFR 30—44 ml/
min/1.73 m? with albuminuria >30 mg/g), 1.24 (1.10—1.54) in CKD at
high risk (e.g., eGFR 45-59ml/min/1.73 m? with albuminuria
30-299 mg/g), and 1.21 (0.98—1.46) in CKD at moderate risk (e.g.,
eGFR 60—89 ml/min/1.73 m? with albuminuria 30—299 mg/g) (Fig. 1)
[9], indicating considerable ASCVD risk underestimation in CKD by
PCE. The corresponding ratios were even greater for CVD mortality
by SCORE, with a median of 2.64 (1.89-3.40) for very high, 1.86
(1.48-2.44) for high, and 1.37 (1.14-1.69) for moderate risk CKD.
The percentage of individuals with eGFR <30 ml/min/1.73 m? classi-
fied at very high risk for CVD mortality (>10% in 10 years) increased
from 30.9% to 53.5% by adding the eGFR patch to the recalibrated
SCORE, compared to 14.2% and 29.0% for the original SCORE for low-
and high-risk countries (Web Table 14).

4. Discussion

There are several key findings from this study. First, after recali-
bration, PCE and SCORE showed good discrimination across the
cohorts in our global Consortium. Second, the “CKD Patch” improved
discrimination and CVD risk classification beyond recalibrated PCE
for ASCVD and recalibrated SCORE for CVD mortality. Third, the
improvement by the CKD Patch was generally more evident for CVD
mortality prediction than for ASCVD prediction. Fourth, as expected
and now quantified, the impact on CVD risk was larger at lower eGFR
and higher ACR (defined by KDIGO as higher risk CKD categories).
Finally, the calibration of the original PCE and SCORE equations var-
ied markedly across a broad range of international datasets.

Whether the changes in c-statistic with addition of the CKD Patch
in our study (e.g., 0.010 for ASCVD and 0.027 for CVD mortality) are
clinically meaningful deserves some discussion. These values may
look small but are actually a magnitude ~5-10 times larger than
what was reported for the addition of high-sensitivity C-reactive pro-
tein or fibrinogen for ASCVD in an international meta-analysis [18].
Importantly, unlike most non-traditional predictors, eGFR is routinely
assessed in clinical practice (e.g., hundreds of millions of tests of
serum creatinine are conducted annually in the USA), and the assess-
ment of albuminuria is a non-invasive test recommended for individ-
uals with diabetes, hypertension, and CKD by major clinical
guidelines. Thus, instead of a typical question of whether it is worth
additionally measuring non-traditional predictors, the question for
CKD measures is whether healthcare providers should ignore readily
available information on CKD measures in CVD risk prediction. Our
results clearly indicate that the answer is no.

The fundamental concept of a “CKD Patch” is consistent with the
new concept of “risk enhancers” in the AHA/ACC 2018 Cholesterol
Guideline. However, the AHA/ACC Guideline does not specify how to
quantitatively enhance predicted risk based on kidney dysfunction.
Our approach of the “CKD Patch” provides an objective method for
enhancing predicted ASCVD risk by incorporating quantitative values

of both CKD measures into PCE (http://ckdpcrisk.org/ckdpatchpce/).
As shown in Fig. 1, not incorporating CKD measures leads to underes-
timation of ASCVD risk in a majority of individuals with very high-
risk CKD (e.g., eGFR 30—44 ml/min/1.73m? with ACR 30—299 mg/g)
and high-risk CKD (e.g., eGFR 45-59 ml/min/1.73m? with ACR
30-299 mg/g) by ~55% and ~25%, respectively.

The “CKD Patch” improved risk prediction of CVD mortality more
than that of ASCVD. This is consistent with our previous report which
demonstrated that CKD measures were more strongly associated
with CVD mortality and heart failure compared to ASCVD [3]. These
observations have biological plausibility since left ventricular hyper-
trophy [19] and accompanying diastolic dysfunction have been rec-
ognized as the most common cardiac phenotype related to CKD [2],
and these conditions can lead to development of heart failure, a con-
dition with high mortality.

This risk enhancement, quantified by the CKD Patch (http://
ckdpcrisk.org/ckdpatchscore/), in the prediction of CVD mortality has
important implications for the ESC CVD Prevention Guideline, which
has focused on risk of CVD mortality to guide preventive approaches.
The ESC Guideline provides general estimates of CVD mortality risk
by CKD status while our CKD Patch refines CVD mortality risk predic-
tion by adding CKD measures to traditional risk factors. For example,
our risk tool predicts CVD mortality in persons with CKD at very high
risk (red categories in Fig. 1) as ~2.5 times higher than that predicted
by SCORE with appropriate calibration. Therefore, some individuals
with eGFR 30—59 ml/min/1.73m? will have very high risk, likely
requiring preventive medications, while the current European guide-
line classified all as having high risk (10-y CVD mortality risk of
5-9%) and emphasized intensive lifestyle advice.

We demonstrated heterogeneity across datasets in baseline sur-
vival free of CVD beyond what is explained by the traditional predic-
tors, indicating that one size would not fit all [20]. This observation is
not surprising since the incidence rate of CVD varies substantially by
factors beyond traditional predictors, such as socioeconomic status,
lifestyle, region/country, and calendar year. Different methods have
been proposed to optimize calibration, e.g., recalibrating an existing
equation [14] or developing a unique equation to specific regions/
countries [21] or clinical groups (e.g., diabetes) [22]. Alternatively, a
few groups have proposed a method to utilize national data to tailor
risk prediction for each country [20,23]. A limitation of all approaches
is that incidence rates often change over time due to various reasons
(e.g., the development of novel therapies).

There are several limitations of this study. The assessment of CKD
measures and traditional risk factors was not fully standardized
across cohorts. Similarly, the ascertainment and definitions of CVD
were not identical across cohorts. We relied on an assessment of
eGFR and albuminuria at a single timepoint. Also, we did not have
information on primary causes of CKD. In addition, the validation
datasets were not necessarily randomly selected. However, our vali-
dation datasets with varying study characteristics seem actually con-
servative and advantageous in terms of generalizability. Although
our cohorts represent 41 countries, we have only a few cohorts that
include participants from South America, the Middle East, and Aus-
tralia, and no cohorts from Africa. The complete case data analysis
can be also viewed as a limitation. However, the results were largely
consistent in research cohorts and clinical database studies;
mechanisms of missing data can be considerably different in these
two study types (typically sicker populations tend to have missing
data in research cohorts, whereas clinical databases will oversample
sicker populations who are more likely to have more laboratory
measurements).

In conclusion, eGFR and albuminuria enhance CVD risk prediction.
The “CKD Patch” developed in this study enables objective calibration
of CVD risk in CKD at higher risk, defined by lower eGFR and higher
albuminuria, and improvement of two major existing prediction
models, the PCE for ASCVD and SCORE for CVD mortality.
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Data sharing statement

Under agreement with the participating cohorts, CKD-PC cannot
share individual data with third parties. Inquiries regarding specific
analyses should be made to ckdpc@jhmi.edu. Investigators may
approach the original cohorts regarding their own policies for data
sharing (e.g., https://sites.cscc.unc.edu/aric/distribution-agreements
for the Atherosclerosis Risk in Communities Study).
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