10 research outputs found

    Measuring Baryon Acoustic Oscillations along the line of sight with photometric redshifs: the PAU survey

    Get PDF
    Baryon Acoustic Oscillations (BAO) provide a standard ruler of known physical length, making it a promising probe of the nature of dark energy. The detection of BAO requires measuring galaxy positions and redshifts. "Transversal" (angular distance) BAO measure the angular size of this scale, while "line-of-sight" (or "radial") BAO require precise redshifts, but provide a direct measurement of the Hubble parameter at different redshifts, a more sensitive probe of dark energy. The main goal of this paper is to show that a precision of sigma_z ~0.003(1 + z) is sufficient to measure BAO in the radial direction. This precision can be achieved for bright, red galaxies, by using a filter system comprising about 40 filters, each with a width of ~100 A, from ~ 4000 A to ~ 8000 A, supplemented by two broad-band filters. We describe a practical implementation, a new galaxy survey, PAU, to be carried out with a telescope/camera combination with an etendue of about 20 m^2deg^2, and covering 8000 sq. deg. in the sky in four years. We expect to measure positions and redshifts for over 14 million red, early-type galaxies with L > L* and i_AB < 22.5 in the interval 0.1 < z < 0.9, with sigma_z < 0.003(1 + z). This population has a number density n > 10^-3 Mpc^-3 h^3 within the 9 (Gpc/h)^3 volume of the survey, ensuring that the error in the determination of the BAO scale is not limited by shot-noise. By itself, such a survey will deliver precisions of order 5% in the dark-energy equation of state parameter w, if assumed constant, and can determine its time derivative when combined with future CMB measurements. In addition, PAU will yield high-quality redshift and low-resolution spectroscopy for hundreds of millions of other galaxies.Comment: 56 pages, 18 figures. Version 4 fixes figures 5 and 9 to 14 that had been erroneously uploaded in v2 and v3. The figures were however correct in version

    Phage phi 29 protein p1 promotes replication by associating with the FtsZ ring of the divisome in Bacillus subtilis

    Get PDF
    <p>During evolution, viruses have optimized the interaction with host factors to increase the efficiency of fundamental processes such as DNA replication. Bacteriophage phi 29 protein p1 is a membrane-associated protein that forms large protofilament sheets that resemble eukaryotic tubulin and bacterial filamenting temperature-sensitive mutant Z protein (FtsZ) polymers. In the absence of protein p1, phage phi 29 DNA replication is impaired. Here we show that a functional fusion of protein p1 to YFP localizes at the medial region of Bacillus subtilis cells independently of other phage-encoded proteins. We also show that phi 29 protein p1 colocalizes with the B. subtilis cell division protein FtsZ and provide evidence that FtsZ and protein p1 are associated. Importantly, the midcell localization of YFP-p1 was disrupted in a strain that does not express FtsZ, and the fluorescent signal was distributed all over the cell. Depletion of penicillin-binding protein 2B (PBP2B) in B. subtilis cells did not affect the subcellular localization of YFP-p1, indicating that its distribution does not depend on septal wall synthesis. Interestingly, when phi 29 protein p1 was expressed, B. subtilis cells were about 1.5-fold longer than control cells, and the accumulation of phi 29 DNA was higher in mutant B. subtilis cells with increased length. We discuss the biological role of p1 and FtsZ in the phi 29 growth cycle.</p>

    Viral terminal protein directs early organization of phage DNA replication at the bacterial nucleoid

    No full text
    The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages ϕ29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli, respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage ϕ29 revealed that the TP N-terminal domain (residues 1–73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of ϕ29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid

    Varia

    No full text

    An Insight Into the Production, Characterization, and Mechanisms of Action of Low-Cost Adsorbents for Removal of Organics From Aqueous Solution

    No full text

    Posters * Embryology (Embryo Selection)

    No full text
    corecore