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Abstract

In this thesis, the author presents an implementation of an automated trad-
ing system for power trading based on deep reinforcement learning. The
model focuses on the intraday market, which became more important with
the widespread introduction of intermittent renewable production. This
market allows trading until shortly before the period of delivery. The ob-
jective is to learn the optimal trading strategy that maximizes the profit of
the agent while reducing the risk exposure. The sequential decision making
is formulated as an MDP and solved with advantage actor-critic algorithm
(A2C). The best performance configuration outperforms baselines strategies
based on the volume-weighted average price. Furthermore, this model could
be extended to other commodity or financial markets.
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Chapter 1

Introduction

Reinforcement learning (RL) consists of an agent interacting with the en-
vironment to learn the optimal behaviour [1].

Lately, there has been a sharp rise of automated trading systems (ATS)
in the financial industry. In 2001, an IBM team presented an ATS that
outperform human traders [2].

Trading is a sequential decision problem with a finite horizon that aims
to maximise the future return. RL research have shown promising results for
learning optimal strategies in stock indexes [3][4] and power markets [5][6].

1.1 Statement of the problem

Power generation and demand must be balanced at any time to secure elec-
tricity grid connections and supply [7].

Unlike traditional power sources, forecasting renewable energy produc-
tion becomes challenging due to the intermittent generation and rapid changes
in the volumes generated. This boost of intermittent renewable sources in
the energy mix increases the volatility of the power market [8]. Therefore,
power traders should adjust their position in the market when they foresee
deviations in the production from the original trading plan. The intraday
market allows participants to update their position based on the updated
forecast in the very short-term before delivery [9].

The goal for power trading is to find the optimal trading execution max-
imising the profit while reducing the risk exposure.

1.2 Research questions

The research aims to answer the following questions:

• Is reinforcement learning suitable to solve open positions in the intra-
day power market?
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CHAPTER 1. INTRODUCTION

• Can reinforcement learning strategies converge to an optimal strategy?

• Can a multi-agent implementation perform well across different trad-
ing instruments?

• Can trading strategies based on deep reinforcement learning outper-
form basic quantitative strategies?

1.3 Contribution

The author proposes an ATS based on RL to participate in the power mar-
ket. The research implements an autonomous multi-agent model that oper-
ates in parallel for the 24-hourly market, adjusting open positions introduced
by volatile renewable power sources. This work focuses on the German power
market, particularly in the continuous market until shortly before the time
of delivery.

The trading model should learn the optimal strategy to operate in the
market through rewards and punishments without a model of the market
nor examples of the optimal behaviour. These agents observe the quality of
its bids in the market based on the rewards provided by the model, following
this feedback, the agent learns to improve its behaviour.

The goal of the model is to achieve the optimal portfolio execution,
maximising the future discounted reward.

1.4 Outline

The rest of this thesis is organised as follows:

• Chapter 2 introduces the power trading market in continental Europe,
describing strategies and trading benchmarks.

• Chapter 3 provides a theoretical description of deep reinforcement
learning policies and methods.

• Chapter 4 introduces the related work on algorithmic trading and
power trading.

• Chapter 5 details the formulation of the proposed trading framework
and market formulation.

• Chapter 6 describes the settings of the models and presents the results
for several configurations.

• Chapter 7 discusses the outcomes of the project; then it outlines the
limitations of the project and prospective future work in the research.

Deep Reinforcement Learning for Intraday Power Trading 3





Chapter 2

Power markets

The following chapter details the power markets configuration in continental
Europe. The common electricity market in Europe integrates rules and
infrastructure, allowing cross-border power trading. The last part of the
section describes a basic trading strategy and its fundamentals.

2.1 Introduction

Motivation

Demand and supply of power in the electric grid must be balanced at any
time to ensure the grid connections and the power supply [7]. Electricity
production from nuclear, thermal and hydropower assets can be scheduled
and adjusted based on the estimated market demand on long, medium-
and short-term basis. However, the growing share of intermittent renewable
energy generation depends on the sun shining or the wind blowing, hence
making it challenging to forecast [8].

To understand the importance of the research in continental Europe, the
share of power generation from renewable sources in Germany rose by about
100% in eight years, from 19.1% in 2010 to 40.4% in 2018 [10].

The more the volatile the power assets are, the greater the challenge to
capture these significant variations in the market.

Fundamentals

The role of the power market is to ensure this equilibrium between buyer
and sellers [11]. This market introduces liquidity maximising social welfare
by reducing the overall price paid.

The power market is organised as follows: a seller that supply power
either generated by itself or negotiated in secondary markets; a buyer that
agrees to consume the energy; an exchange that offers a platform to submit
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orders and a central counterparty. This scheme incentives liquidity, trans-
parency, and enforces market rules [12]. The regulator ensures the physical
obligation to deliver or consume the purchased or sold energy. Power ex-
changes offer a platform to submit bids for selling and buying power. The
figure of the exchange and central counterparty in continental Europe lies
on EPEX-SPOT [11].

Traders take a position in the market by buying or selling a volume of
power according to a forecasted value. This position is a commitment to
a particular trading product. The difference between the position in the
day-ahead market and a later and thus more updated production forecast is
the open position or imbalance. Market participants adjust their position in
the market when they foresee deviations in the production or demand from
the original trading plan to avoid potential imbalance costs.

2.2 Power market trading

Power in continental Europe can be traded on the spot market in the day
ahead auction, the continuous intraday market and the balancing market.
A detailed description of the European market can be found in the technical
notes of the European Commission [13].

     12:00       15:00                            H -1 
Day before delivery Power delivery day

Day ahead 
auction 

Power 
delivery 

Intraday market Balancing 
market

Figure 2.1: Power market in continental Europe

2.2.1 Day-ahead (DA) auction

EPEX SPOT organises an auction the day before of the power delivery at
2 pm for several trading instruments. These power trading instruments are
single hours or block of hours of the following day. The members of the
exchange may submit an order to buy or sell energy at a price or better for
a specific trading product.

Because of the volatility of the markets, a complimentary 15-minute
intraday auction at 3 pm has been introduced [14]. Nevertheless, the thesis
focuses only on the 24-hourly products.
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Price calculation The price settlement for the DA auction takes place
daily matching the supply and demand curves for each instrument [15]. Buy
orders are aggregated to a demand curve while sell orders are aggregated to
an offer curve. The auction maximises the welfare of the market participants.

The market-clearing price is the lowest bid to buy power accepted in
the auction and represents the cost of the most expensive source needed to
balance the system [16].

The result of the auction is the equilibrium price for each trading in-
strument. The supply meets demand at a uniform price clearing for all
participants. A competitive market generates electricity at the lowest price
possible for each instrument, and this price is driven by the running cost
of the power plant. In the current scenario, renewable energy at very low
marginal cost brings down the prices.

2.2.2 Continuous intra-day (CID) market

Intraday markets limit shortfall or surplus in the grid through short term
trading. Forecasting challenges are reflected in market dynamics.

The volume traded in this market has increased continuously since the
introduction in the energy mix of more intermittent energy sources. German
CID market experienced an annual growth higher than 10% from 2015;
therefore, the liquidity of the market drastically improved. From 2010 to
2018, the volume traded in the continuous intraday market rose by 500%,
from 10 TWh to 47 TWh.

At 3 pm the day before power delivery until one hour before power deliv-
ery, market participants may trade energy in the EPEX bilateral exchange
on hourly or quarterly-hourly products. An extended description of the CID
market can be found in [17].

Unlike the DA market, the prices in the intraday market are set in a
pay-as-bid process. The prices are determined on each transaction basis
and fluctuate during the trading session. CID market allows the market
participants to reduce their imbalance cost, optimise production or demand
schedule and offer flexibility to the market. Likewise, traders use this market
to balance position as results of unexpected outages or to cover forecast
deviations.

The orders can be executed and cleared immediately when there is a
corresponding matching order at the best price available. The trading ses-
sion duration differs for the different trading instruments. For example, the
market for the first hour of the day, 00:00 to 00:59, opens for 9 hours from
15:00 to 23:00. In the same way, the market session for the instrument 23:00
to 23:59 lasts for 31 hours.

At present, most of the trading activity occurs in the last hours before
gate closure, and the market suffers from substantial price variation during
the trading session. Market participants are likely to trade if intraday prices

Deep Reinforcement Learning for Intraday Power Trading 7
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are more favourable than expected imbalance prices.

Intraday trading also takes place off-market in an over the counter (OTC)
agreement. These large volume contracts are negotiated between buyers and
sellers; however, these transactions do not reflect on the order book despite
influencing the market dynamics.

Order book The order book includes all the orders submitted anonym-
ously to the EPEX trading platform by the market participants.

An order is a commitment to buy or sell a quantity for a price or better in
a given trading instrument. Each entry in the order book targets an hourly
instrument to trade, specifying the volume (MWh) and price (EUR/MWh).
They contain additional information regarding starting the validation date
and expiration date in the case. Orders are constrained to a trading-zone,
generally a country.

The market participants have real-time access to the order book where
they can find both executed but also pending transactions. Pending orders
may expire, and they can be arbitrarily withdrawn or amended. Participants
can submit orders at any time during the trading period before delivery.

Orders in the exchange order book are limit orders which carry a price
which can only be executed at this price or better. That is the reason why
the order book is also called Limited Order Book (LOB). Limit orders are
matched at a limit price or better; this price represents the maximum bid
price or minimum ask price.

2.2.3 Balancing market

Once the intraday market closes, traders may adjust their open position in
the balancing market. Traders may find arbitrage opportunities between the
intraday and this balancing market, according to the positive or negative
imbalance price level.

2.3 Short term power trading

The market participant may submit buy or sell orders to the exchange ac-
cording to its needs. Traders bid in the DA market based on the forecasted
production of a power assets portfolio or forecasted power demand. The out-
come of the DA auction for each one of the trading instruments represents
the trader’s position in the market.

Once the CID trading session progresses, the traders should adjust their
position in the market when they foresee deviations in the production or de-
mand from the original trading plan. The difference between the forecasted
volume traded in DA and the actual adjusted forecasted value is the imbal-
ance or open position. The trader aims to maximise the profit or minimise

8 Deep Reinforcement Learning for Intraday Power Trading
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the cost by selling or buying this quantity in the CID market, reducing the
risk exposure. The profit-and-loss (PnL) accounts for the performance of
the model.

Short and Long positions Traders in a long position would try to re-
duce the positive imbalance (surplus of power in its portfolio), bidding sell
orders that could match buy orders. Likewise, traders in a short position
try to reduce the negative imbalance (lack of power in its portfolio), bidding
buy orders that match sell orders. Once a trader submits an order to the
exchange, the order may be immediately executed or wait until a future
order matches it.

The agent in the CID market aims to find the optimal trading execution
to close the position (zero out the imbalance) before the market closure.
This is to say, maximising the profit in the long positions or minimising the
cost in the short positions.

2.4 Strategies CID market

A trading strategy is a set of predefined rules used to make trading decisions
based on data, known as systematic trading. Systematic trading consists of
three phases: trading planning, bidding and executing.

Trading strategies consider a set of metrics to define objectives and set
limits, such as profit and risk aversion. Sharpe-ratio is one measure of the
risk, which relates the mean of the single return to their variance.

Traders may follow several quantitative strategies to find an optimal
trading execution. A benchmark is required by traders to assess the per-
formance of their strategies.

The trading strategy should be able to perform well across different
trading instruments for a long period. Strategies should be backtested with
historical data, although, past performance does not guarantee future res-
ults.

VwAP Volume-weighted average price (VWAP) is the ratio of an instru-
ment price to its total trade volume. This level price is calculated using a
set of executed orders at a given time. Moving average methods, such as
VWAP, provide an excellent estimator to capture trends and price levels
during the market session.

VWAP(e/MWh) =
value traded(e)

volume traded(MWh)

Deep Reinforcement Learning for Intraday Power Trading 9
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VWAP Strategy

VWAP price level can be used to participate in the power market based on
the orders present in the LOB. When the trader has a negative imbalance,
she tries to match sell orders at VWAP price level or below. On the contrary,
when she has a positive imbalance, the trader tries to match buy orders at
the VWAP price level or better.

According to the time frame used to calculate this price, it is possible to
build several VWAP variants. The calculation may consider all the orders
traded in the current session or the ones executed in the last n-minutes.

Because of the power markets liquidity, the given price may not find to
find orders to match above or below this price level. The spread between
the bid (buy orders) and sell (ask orders) increases as the liquidity of the
market decreases.

VWAP strategy should include fallbacks to avoid open positions at the
end of the session. For example, by forcing a progressive reduction in the
imbalance position as the market session progresses.

Risk

Risk can be measured as the proportion of the initial imbalance during the
market session. A large open position at the end of the market involves
higher risk because of market liquidity. The agent may not be able to close
out its open position or do so at a higher cost compared to previous session
prices.

Benchmarking

As described, VWAP prices serve as a baseline for more complex methods;
this reference price is one of the benchmarks in the trading industry. The
returns of a strategy may be compared against the baseline to evaluate the
performance.

10 Deep Reinforcement Learning for Intraday Power Trading



Chapter 3

Reinforcement Learning

Reinforcement Learning (RL) is a sequential decision learning process under
uncertainty. RL is a statistical learning method used to learn optimal beha-
viour through interaction. Sutton and Barto in [1] provide a comprehensive
study of RL methods and algorithms.

RL is different from supervised or unsupervised learning because RL
does not rely on labelled data nor on finding hidden structures in the data.

The learner and decision-maker is known as agent. The entity that the
agents interact with is called environment. For each interaction, the agent
receives a scalar feedback named reward.

The goal of RL is to select actions that maximise the total expected
future reward. Initially, the model of the environment is unknown by the
agent, and the agent learns the optimal behaviour by trial and error. The
agent should discover a good behaviour, hereinafter policy, from new exper-
iences without losing too much reward over time.

The iterative learning process faces an exploration-exploitation trade-
off. The dilemma is to explore new and uncertain actions to increase the
knowledge of the model or exploiting the good actions already known to
maximise the future reward.

General RL problem may break into smaller sequences called episodes.
Finite horizon problems, known as episodic problems, have a limited number
of time steps per episode. The episode starts at the initial state and ends at
the terminal state. Once reached the last step of the sequence, the problem
resets to a standard initial state.

On the other hand, infinite problems grow unbounded in the number of
steps without a clear and defined final time step. There are no episodes per
se in this type of problems. These problems are known in the literature as
continuing tasks.

The research will focus on episodic problems.

Deep Reinforcement Learning for Intraday Power Trading 11
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3.1 Markov decision process

Markov Decision Process (MDP) provides a mathematical formulation of the
RL problem. Puterman introduced MDPs in 1990 [18]. The environment
state is markovian if the current state is a sufficient statistic of the future,
capturing all relevant information from history. In some cases, the agent
gets a partial observation of the environment state, the so-called partially
observable MDP (POMD).

An MDP framework characterises the state of the RL problem by a
5− tuple where:

• A is the discrete or continuous set of actions.

• S is a set of possible states. Actions may depend on the state of the
agent.

• T : SxAxS → [0, 1] is the transition probability, i.e. distribution over
the next state given current state and actions

• R : SxAxS → R is the reward given state and action pair

• γ is the discount factor and reflects interest of short-term vs long-term
rewards

The RL problem is formalised as a sequence of discrete-time steps. The
process to interact with the environments works is described as follows: The
agent starts in a given state s0 and receives observation o0. At time t, agent
takes action at, receives observation ot and reward rt−1. This sequential
configuration was introduced by Bellman [19] in 1957 and later extended by
Barto et al. [19].

Figure 3.1: MDP formulation. Original image [1].

The agent state is the internal information of the environment and func-
tion of history. For each interaction with the environment, the agent receives
a scalar feedback signal that indicates the quality of the action, the so-called
reward Rt. The return Gt is the sum of discounted reward Gt =

∑∞
t=0 γ

ttRt
that the agent seeks to maximise. The discount factor γ is the value used

12 Deep Reinforcement Learning for Intraday Power Trading
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to compute the present value of future rewards. This parameter is used to
learn the credit assignment for delayed rewards.

Multi-agent sytems The single-agent configuration can be extended to
a multi-agent setup. These agents can cooperate or compete with each
other toward a common or an individual goal [20]. The agents may be
unaware of the multi-agent configuration. A relevant case of these systems
is the decentralised multi-agent systems where agents only know about their
tasks, rewards and observations. A simple approach is to learn a single policy
that performs well across different related tasks [21]. Actor-critic is a fully
decentralised algorithm, and it will be used in this master’s thesis for solving
the learning problem.

The environment model represents how the environment reacts to the
given action and a reward. The transition model of the problem predicts
the next state, while the reward model predicts the next reward. The policy
π defines the agent behaviour mapping from states to actions. Policies can
be deterministic A = π(S) or stochastic A(s) = π(a|s).

Value function

The value function V π(s) is the expected return Gt starting from state st
and following policy π. This is known as the Bellman Equation.

V π(s) = E[Gt|st = s, π] = E[Rt+1 + γGt+1|s = st, π]

Similarly, we can define the state-action value functions as the expected
return of an action a in state s following policy π.

Qπ(s, a) = E[Rt + γV π(st+1)|s = st, a = at, π]

Solving the Bellman optimality equation solves the MDP, this is to find
the optimal policy. The optimal value function, known as the Bellman op-
timality equation, is the maximum value function possible over all possible
policies. A policy which value function are optimal is an optimal policy.

V ∗(s) = max
π∈Π

V π

This optimal value can be obtained from Q∗(s, a). For finite MDPs the
Bellman optimality equation has a unique equation. The optimal policy is
the one with the highest expected return possible over all policies. There
can be several policies that share the same state-value function.

π∗(s) = argmax
π∈Π

Q∗(s, a)

Deep Reinforcement Learning for Intraday Power Trading 13
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There are two fundamental problems in RL: Learning the policy with an
unknown initial environment by interacting; Planning in a model given the
dynamics and the reward model with no interaction with the environment.

RL problems fall into two categories depending on the nature of the
problem: Prediction problems try to evaluate the future estimating the value
function given a policy; Control problems try to optimise the future given
a policy.

There are two techniques for updating the policies and value functions:
Bootstrapping that estimates the value function using the current estimate;
Sampling that samples the true model to estimate the future expected value.

3.2 Reinforcement Learning algorithms

There are two main types of RL algorithms based on whether a true model
for the MDP is available:

• Model-based which have a defined model of the environment and an
implicit value function or policy.

• Model-free which have an explicit value function and/or policy with
no model.

There are two learning process based on the origin of the experience:

• On-policy learning leans about policy π from experience sampled from
the same policy π.

• Off-policy learning leans about policy π from experience sampled fol-
lowing a policy that may be unrelated.

There are two main types of RL algorithm to solve the RL problems
depending on the approach used. In addition, a third type is possible by a
combination of both algorithms:

• Value-based in which the value function is implicit, and the policy can
be derived from the value function.

• Policy-based in which an explicit policy with no function.

• Actor-Critic is a hybrid type method which has implicit value function
and policy.

3.2.1 Value-based methods

Value function methods are based on estimating the expected return given a
state s. Once we have the optimal value function V ∗(s), the optimal policy
can be found by taking that action that maximises the return. Therefore, we
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can use state-action function Qπ(s, a) to find the optimal policy by acting
greedily at every step argmaxπ∈ΠQ

∗(s, a).

Dynamic programming (DP) is a method to solve known MDPs for
model-based problems by computing the value functions.

Model-based policy evaluation and control

Generalised policy iteration (GPI) finds the optimal policy Q∗ from an ar-
bitrary actions-state value function Qπ. This method consists of Policy eval-
uation and Policy improvement. Estimating the value (prediction) function
is called policy evaluation and optimising the policy to maximise the value is
called policy improvement. The idea behind GPI is that approximate policy
and value function interact to converge towards the optimal values.

The following algorithms find the optimal value function and an optimal
policy when a true model is available: Policy search is a brute force method
that finds the optimal value function V ∗(s); Policy iteration can be used
to find a deterministic policy at that is not worse than a given stationary
policy; Value iteration can be used to compute the optimal value function
given an MDP.

DP exploits Bellman equation written in the recursive form:

Qπ(st, at) = E[Rt + γQπ(st+1)|s = st, a = at]

DP methods update estimates of the values of the states based on estim-
ates of the values of the subsequent states. We can use the current values of
the estimated Qπ for policy improvement by bootstrapping. DP requires a
model with the complete dynamic of the problem in the form of a probability
distribution.

Model-free policy prediction

Model-free policy prediction evaluates a given policy by averaging the re-
turns from multiple rollouts of a policy π. Montecarlo (MC) evaluation and
Temporal Difference TD learning do not require a model of the environment
and reward, only samples. Because the state value is the expected return,
the average can be assumed as a good approximation of the value. For this
reason, we need to learn the value function V π of a given policy π.

Montecarlo MC is a simple but powerful method to learn without a model
by sampling for many episodes. MC averages the sampled returns Gt instead
of using the expected return, and thus it is an unbiased method MC policy
evaluation converges to the policies value V π function because of the law
of large numbers. MC does not update its values by bootstrapping. The
MC target is an estimate because the expected value is unknown; thus the
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sample return is used instead. The learning rate α defines the extent at we
update the value V (s) towards the return Gt.

V (st) ← V (st) + α(Gt − V (st)

Importance sampling estimates the expected value of a function when the
sample is drawn from a different distribution. This technique facilitates the
evaluation without the knowledge of the transition probabilities or rewards.

Temporal Difference Unlike MC methods that can only be applied to
episodic MDPs, Temporal Difference (TD) also works in infinite horizon
problems. TD methods use sampling and bootstrapping during each epis-
ode; thus, this method can learn from an incomplete episode. TD target
is a biased estimate of V π(s) with a much lower variance compared to MC
because the estimation depends on a single interaction per update rather
than a whole episode. TD exploits Markov property, and thus it is usually
more efficient in such environments than MC.

TD target is an estimate because it samples the expected values and it
uses the current estimate V (St+1) instead of the true value Vπ(St+1).

Q(st, at) ← Q(st, at) + α∇

TD updates V (st) towards the estimated return (target) Rt+γV (st+1). TD
error is ∇ = Rt + γV (st+1)− V (st).

V (st) ← V (st) + α(Rt + γV (st+1)− V (st))

The advantage function Aπ(s, a) = Qπ(s, a) − V π(s) represents the re-
lative advantage of actions given a state. This function represents the ad-
vantage of taking action a in the state s versus all possible actions at that
state.

Model-free policy Control

Model-free control optimises the value function in an unknown MDP when
samples are available. Also, these techniques are suitable when the models
are known, but the dimensions of the problem make model-based methods
intractable.

GPI finds the optimal policy Qπ from an arbitrary actions-state value
function Qπ. Policy evaluation improves the estimate of the value function
by reducing the TD error. Therefore, as this estimate improves, the policy
also improves by choosing actions greedily.
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Q-learning The algorithm Q-learning uses the learned action-value func-
tion to directly approximated the optimal action-value function Q∗. Q-
learning is an off-policy method because the Qπ update follows the greedy
policy that directly approximates the optimal Q∗.

Q(st, at) ← Q(st, at) + α(rt + γmax
a′

Q(st+1, a
′)−Q(st, at))

Q-learning estimates the Q function based on the estimates at the pre-
vious step and thus the target is Y = rt + γmaxaQ(st+1, a∗).

Q-table Q(st, at) stores the value function update for each state and
action. At each step, the pair action-action is updated, and then over a
large number of iterations, the model converges to the optimal Q∗(st, at).
In practice, value iteration does not generalise well with unobserved states
or a limited number of samples. This approach becomes impractical for a
complex problem because of the high-dimensionality.

To trade-off between exploration and exploitation, the learner with prob-
ability ε chooses to explore random actions instead of the greedy action im-
plied by Q(s, a). This technique is done to avoid following the first effective
strategy it finds. The ε − greedy policy explores probability ε and exploits
the well-known action with probability 1− ε.

SARSA SARSA is a TD algorithm designed for online control problems.
The algorithm state-action-reward-state-action (SARSA) updates Q(s, a)
with the next reward, state and action derived from the current policy at
the update time.

Q(st, at) ← Q(st, at) + α[rt + γQ(st+1, at+1)−Q(st, at)]

For this algorithm, TD target is Y = rt + γQ(st+1, at+1), a TD biased
target because it uses an estimated value of the next state.

In theory, both methods Q-learning and SARSA converge to an exact
estimated of Q(s, a) (fixed policy) when every pair state-action is visited an
infinite number of times. However, in practice, the learners reach optimal
performance despite not meeting these requirements.

3.2.2 Policy search

The goal is to find a policy directly with the highest value function instead
of finding the optimal value function. These algorithms consider stochastic
policies that are parametrised while value function method approximate
parametric value functions. The parameters of the policy πθ(a|s) are up-
dated to maximise the expected return.
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Policy-based algorithms have several advantages over value-based ones:
good convergence properties; learn stochastic policies that can be exten-
ded to high-dimensional or continuous spaces. Although, these algorithms
present some disadvantages: the tendency to fall in local optima; policy
evaluation suffers from high variance; they are not always a data-efficient
technique.

The parametrised function can be optimised using gradient-based or
gradient-free approaches. However, most of the research focuses on the
gradient-based approaches to update the parameters.

Policy-based methods handle continuous action spaces with an infinite
number of action because they learn statistics of the probability distribution.
Therefore, these algorithms are suitable for those intractable problems using
value-based methods.

Gradient-free

Gradient-free methods do not compute the gradient of the objective func-
tion to find the optimal policy. For this reason, they can also optimise
no-differentiable policies.

Some of these algorithms require a heuristic search across pre-defined
models, such as Genetic Algorithms and Evolution strategies. The disad-
vantage from these gradient-free methods is the sample efficiency because
they generally neglect the temporal structure of the rewards.

Gradient-based

“Policy-gradient (PG) methods update the policy parameter on each step
in the direction of an estimate of the gradient of performance with respect
to the policy parameters”[1].

Note that the policy can be parameterised if is differentiable with respect
to its parameters.

PG defines an objective function J(θ) to maximise over θ by gradient
ascent. The parameters θ are updated towards the direction suggested by
the gradient ∇θJ(θ) to find the optimal policy that produces the highest
return.

The objective function J(θ) =
∑
P (τ ; θ)R(τ) where Pτ represents the

transition probabilities and R(τ) the expected rewards for an episode.

The policy gradient theorem provides an analytical expression for the
gradient of the performance with respect to the parameters of the policy.
Sutton and Barto in [1] prove that the gradient of the V (s) can be written
in terms of the Q(s). The policy gradient theorem for the episodic case can
be written as follows:

∇J(θ) = E[qπθ(s, a)∇θ logπθ(a|s)]

18 Deep Reinforcement Learning for Intraday Power Trading



CHAPTER 3. REINFORCEMENT LEARNING

This theorem serves as the foundation of policy gradient methods. They use
the result to maximise the return by repeatedly estimating the gradient.

REINFORCE Montecarlo-policy gradient estimates the return by sampling
to update the parameters θ. These reward samples are simple scalars that
do not depend on the parameters of θ. Therefore, an estimator of the gradi-
ent can be used to update the policy because the expectation of the sample
gradient is equal to the true value of the gradient.

The algorithm works as follows:

Algorithm 1: REINFORCE algorithm

initialization θ arbitrarily ;
for each episode following πθ do

for each timestep from t=1 to T-1 do
θ ← θ + αGt∇θ logπθ(at|st)

The objective is to increase the probability of actions with high rewards.
Gradient ascent of the estimator increases the log probability of the sampled
action weighted by the return, that is to say, the ones with higher rewards.

A baseline reduces the high variance in the returns introduced for sampling
returns across different episodes without introducing bias. The idea is to
subtract a baseline value bt from each return Gt to estimate how much bet-
ter result the return compared to the expected baseline. A common baseline
is the advantage-function.

θ ← θ + α(Gt − bt)∇θ logπθ(at|st)

3.2.3 Actor-critic algorithms

Actor-critic methods learn approximation of the value-function and the
policy. The hybrid between value-function and policy search methods con-
sists of an actor and a critic. The actor learns the policy by the feedback
received from the critic. The actor updated the parameters θ for πθ(a|s)
by policy gradient in the direction suggested by the critic. Meanwhile, the
critic updates the parameters Qw(a|s) of the value-function by TD. The
actor-critic setting uses the value function as a baseline to compute the
advantage function.

These methods trade-off the high-variance in the policy search methods
and the high-bias from value-based methods. The result of this function is a
log likelihood-ratio estimator that computes the gradient of an expectation
over a function of a random variable.

Even if REINFORCE with baseline learns both policy and value function
as a baseline whose estimate is being updated, this method is not considered
actor-critic because the value-function is not used for bootstrapping.
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Algorithm 2: Actor-critic algorithm

initialization θ, w, s; samples a from πθ(a|s) ;
for each timestep from t=1 to T-1 do

sample reward rt and next state st+1;
sample next action at+1 ∼ π(aa|st+1

);

update policy parameter θ ← θ + αGt∇θ logπθ(at|st);
compute TD error δt ← Rt + γQw(s′, a′)−Qw(s, a);
update action value parameters w ← w + αwδt∇wQw(s, a);
update a← a′ and s← s′

3.3 Function approximation

The goal of RL is to maximise the expected reward under uncertainty. RL
algorithms can use the existing methods in supervised learning for those
algorithms that require parametrised function approximation. Stochastic
gradient ascent allows maximising an objective function, as seen in the pre-
vious section. Goodfellow et al. in [22] covers thoroughly deep learning
techniques and algorithms.

Neural networks (NN) are used for non-linear function approximation
trained by backpropagation. Multilayer NN proved to find hidden structures
in the data, learning these features by stochastic gradient descent (SGD).
NN can use TD to learn value function or simply maximise the expected
reward.

RL algorithms using deep learning techniques are known as deep re-
inforcement learning (DRL). Deep NN enables feature extraction through
multiple layers in large datasets

DRL enables the RL algorithms to scale up in the dimensions of the
problems. Tabular methods with an entry for each pair state function be-
comes intractable when there are too many state or action. Hence, high-
dimensional complexity problems can be tackled using NN as a function
approximator.

In recent years, RL research has seen several breakthroughs in DRL
algorithms and novel neural network architectures. Meanwhile, hardware
improvements in CPUs and GPUs deliver higher-performance to accelerate
complex DRL applications for a fraction of the previous cost. The improved
DRL algorithms provide better learning capabilities reducing the number of
iterations required to converge to an optimal behaviour.

Deep Mind released in 2013 the first DRL implementation that learned
how to play a range of Atari games [23] and Dota [24], giving RL system
human capabilities. Since then, DRL has achieved large success solving
complex problems in videogames and robotics control [25] [26]. Inxw 2019,
AlphaStar defeated a top professional player in StarCraft with a combination
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of supervised learning and RL in [27].

Value-based DRL

Several DRL implementations succeed learning policies from high-dimensional
inputs from video games. For example, Deep Q-Network (DQN), Double
DQN and duelling DQN proved to outperform human players across differ-
ent Atari games. The idea is to minimise the error between the true action-
value function and the approximated estimates by SGD. An approximate
learning target is used instead of the true action-value function because the
latter is unknown.

Deep Q-learning The algorithm use function approximation to represent
the action-value Q(s, a) function. DRL finds the optimal strategy to play
videogames outperforming human level as detailed in [23] by Mnih et al.

The Q-network is learned by minimising the mean squared error between
the target and the prediction. The one-step ahead learning is the target.

J(w) = E(S,A,T )[rt + γmax
a

Q(st+1, at+1)−Q(st, at)]

DQN uses the same NN to approximate both target and the prediction
Q(s, a) functions. Unlike DQN where the same NN is used to select and
evaluate the action, Double DQN uses separate networks for each Q(s, a)
function [28] [29].

There are several techniques to improve the performance of the DQN
algorithm and extended to the different variants of Q-learning: Experience
Replay stores complete experiences in the form of state, actions and re-
wards. These experiences are sampled at random improving data efficiency
and removing temporal correlation in the experiences; Fixed Target Network
improves the learning stability by updating the network every n steps.

Duelling DQN prevents overestimation and reduces the bias by decoup-
ling action selection from action evaluation. This architecture was intro-
duced by Wang et al. in [30]. The action-value function Q(s, a) is decom-
posed in state-value-function V (s) and the advantage function A(s, a).

Q(s, a) = A(s, a) + V (s)

Policy-based DRL

As in the case of value-function methods, policy gradient methods can be
approximated with NN. Policy gradient directly optimises the policy space
by using REINFORCE algorithm.

The policy network calculates the probability of the actions and then it
samples an action from this distribution. Policy gradient methods wait until
the end of the episode to calculate the reward due to MC settings. Because

Deep Reinforcement Learning for Intraday Power Trading 21



CHAPTER 3. REINFORCEMENT LEARNING

of this, there is not a credit assignment for individual actions but the overall
results.

DPG Deterministic policy Gradient (DPG) models the policy gradient as
the expected gradient of the action-value function [31]. The deterministic
approach makes the estimation simpler than the stochastic policy gradient.
The work demonstrated that DPG algorithms could achieve better perform-
ance than the stochastic ones in high-dimensional spaces.

DDPG Deep Deterministic policy gradient (DDPG) parametrises an ac-
tion function which defines the current policy, and the critic uses Q-learning
for the value function [26]. This algorithm combines DPG and DQN. The
actor is updated by following the chain rule to the expected return with re-
spect to the actor parameters. DQN tricks as experience replay and target
network are used as well. DDPG uses batch mini-batch normalization across
the samples. An exploration policy adds noise to the samples to decouple
the action exploration problem from the learning algorithm.

Actor-critic DRL

There are two main algorithms to implement actor-critic algorithms: Ad-
vantage Actor-Critic (A2C) and Asynchronous Advantage Actor-Critic (A3C).

A3C Asynchronous Advantage Actor-Critic is a PG method for parallel
agents [32]. The author proved that some parallel learners updating a shared
model result in more stable models. A3C runs multiple agents in parallel
on multiples instances (workers) of the environment. Each worker updates
the global network asynchronously every n steps, when the terminal state of
the episode is reached. The main disadvantage is that workers may have a
different version of the environment, and then the updates are not optimal.

A2C Advantage Actor-Critic (A2C) combines DQN and REINFORCE
algorithm [33]. A2C is a synchronous deterministic variant of A3C that
makes the algorithm more sample efficient because it updates the network
synchronously at the end of the episodes.

Two deep networks compose the A2C architecture, a policy network to
learn the policy π(a|s, θ) and a value network to learn the value function
V The A2C implementation creates multiple version of the environment
running in parallel and two networks. At each step, A2C syncs the global
parameter update, and every worker starts with the same policy.

The actor π(s, a, θ) samples the action from a policy and the critic
π(s, a, w) evaluates the action. Where θ represents the parameters of the
policy and w the parameters of the value function. A2C uses TD learning
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for the policy update. The critic network approximates the value function
for each update. Both actor and critic run in parallel, but they are updated
separately.

Actor and critic networks receive state observation sequentially, the
policy outputs the action and then receives new state and rewards. Based
on the feedback received, the critic computes the value of taking that action,
and the critic updates its policy parameters.

Policy network is updated according to the policy loss:

∇θ = α∇θ(logπθ(s, a))Q̂w(s, a)

Value update:

∇w = β(R(s, a) + γQ̂w(st+1, at+1)− Q̂w(st, at))∇wQ̂w(s, a)

Where Q̂w is the estimate of the expected reward, being α and β the
different learning rates for policy and value network respectively.

The advantage function is introduced to assess the action reward respect
to the average. A(s, a) = rt + γV (st + 1)− V (s) If the action is better than
the average, the gradient is pushed towards that action and pushed against
otherwise.

In the actor-critic architecture, the actor network aims to output the
best action possible given a state observation. In the same way, the critic is
another function approximator that receives the state observation and the
action taken by the actor, returning the action-value functions. However, in
A2C, the critic learns the advantage function instead of learning the action-
value function.

3.4 RL libraries

Several libraries implement state-of-the-art RL algorithms. OpenAI intro-
duced a toolkit for developing RL algorithms and environments [34], known
as OpenAI gym. The framework serves as the basis for several RL break-
throughs and benchmarks. It became de-facto standard to developed RL
environments for researchers in the RL community.

Apart from the RL framework, openAI offers Baselines, a repository
with several implementations of RL algorithms [35]. Baselines project was
meant originally for atari videogames, learning from images of the games.
A well-known fork of these implementations is Stable Baselines created at
INRIA robotics lab [36]. Apart from the algorithms, these projects provide
with a framework to run Open AI environments. Both frameworks enable
seamless execution of parallel processes integrating Tensorflow and CUDA.

Another open-source project that provides good quality RL algorithms
implementations is TRFL developed by DeepMind [37]. Similar to Baselines,

Deep Reinforcement Learning for Intraday Power Trading 23



CHAPTER 3. REINFORCEMENT LEARNING

ray-project is an open-source project for RL problems focused on distributed
applications [38].

Facebook offers the Horizon project, renamed recently as ReAgent, to
solve industry problems through RL algorithm. More details in [39]. This
platform includes data preperocessing and tranformation, distribuited train-
ing and policy evaluation.

Most of the libraries above use Tensorflow as a deep learning framework
for machine learning used for numerical computation [40].
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Related work

There are two main applications of RL in financial markets: portfolio op-
timisations where the objective function is the optimal portfolio allocation;
algorithmic trading where trading strategies are based on RL algorithms.

The interest of this research is algorithmic trading applied to power
trading. However, the fundamentals lessons learned in both applications for
financial markets are also valid in the wholesale commodity market, such as
the power market.

Most of the initial research was developed about stock indexes. There-
fore, dynamic programming, TD and MC algorithms focus on the financial
markets. In recent years, published research shifted the focus towards the
cryptocurrency markets; these assets have low entry barriers to the market
data and exchanges platforms.

Financial institutions and hedge funds introduced DRL in their trading
strategies; however, very few publications come from these sources, as in the
case of JP Morgan in articles [41] [42] and reports [43].

4.1 Financial markets

Elton and Gruber [44] presented in 1970 dynamic programming applica-
tions for optimal portfolio allocation. Neuneier [45] presented at NIPS a
Q-learning implementation for an optimal portfolio for the German stock
market. The model presents higher profitability controlling the risk of the
investment with the introduction of the Sharpe ratio in the reward function.

Choi et al. in [46] modelled the electronic trading problem into an MDP
and proved that dynamic programming was suitable to find the optimal
trading execution.

Moddy and Saffel in [47] [48][3] introduced the concept of direct recurrent
reinforcement learning (RRL) in financial applications optimising the sharpe
ratio. Direct RRL is an adaptative policy search that can learn a strategy
online representing the policy directly. The work shows that RRL algorithms
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resulted in higher profits than a Q-learning implementation in the S&P 500
over a 25 years sample period.

Dempster and Leemans in [49] implemented an automated forex trading
system using adaptative RL. The model results in consistent profit avoiding
drawdowns. They included a parameter to trade-off the risk and profit.
Earlier work [50] from the same researchers included order book information,
improving the performance of the trading models. Prior work from Dempster
researches genetic algorithms and RL for the intraday forex market[51].

Jiang and Liang in [52] developed a cryptocurrency portfolio allocation
that outperformed several profit benchmarks and risk ratios. The research
uses raw market data and historical prices as input. The portfolio allocation
is predicted by the outputs of the network across the selected crypto assets.
Instead of using a market simulator, the work considers historical data for
online trading. These same authors presented comparison in [53] for several
network architecture such as CNN, RNN and LSTM. The promising res-
ults of the work on the back-testing show that RL algorithms outperform
quantitative methods. Surprisingly the LSTM performs poorly in the Bit-
coin market respect to the other two networks even if LSTM networks are
meant to capture temporal dependences.

Ittoo and Petit present in [54] a multi-agent Q-learning model to find
the Nash equilibrium.

Deng et al. in [55] developed a DRL implementation for stock-index and
commodity futures contracts. The recurrent model uses the price ticks as
in input; the output signal of the network was used to predict the direction
of the asset. The model trades a single asset at the time. Some of these
authors introduced a framework for high-frequency-trading (HFT) based on
RL for the futures market of Shanghai in a previous work[56].

Zhang and Maringer use genetic algorithms to improve the results of a
RRL equity trading system in [57]. To maximise the profit, they also use
technical and fundamental analysis signals as input for the model.

Yu et al. present a novel approach for portfolio optimisation based on
DDPG algorithm in [58]. A model-free implementation automatically parti-
cipates in the market, having significant returns keeping a low-risk exposure.
The system includes the following modules: an infused prediction module
for the price asset prediction; a generative adversarial data augmentation
module that creates synthetic trading data; a behaviour cloning module to
reduce the portfolio volatility based on imitation learning.

Buehler et al. presented in [59] a DRL framework for hedging portfolios
of derivatives. The work tries to optimise the hedging strategies to find the
optimal minimal price.

Jin and El-Saawy in [60] implemented a RL model for stocks trading.
The work shows the results are not consistent across portfolios and depend
heavily on the learning process.

Liang et al. in [61] implemented DDPG, PPO and PG algorithms for
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continuous asset allocation in the Chinese market. The novelty in the re-
search relies on an adversarial policy gradient method to improve the learn-
ing process. Adding random noise in market prices avoid falling into local
optima policies. The authors point out that the performance in portfo-
lio management does not reach impressive levels, as seen in other learning
areas. They also note that DRL is highly sensitive to the configuration and
its performance sometimes is unstable.

Bu and Cho in [62] built an automated trading system combination
of DQN and Boltzmann machine in cryptocurrency trading. The model
obtained modest profits while the crypto asset dropped significantly in the
simulation period.

4.2 Power markets

Song et al. framed the bidding strategy in the spot electricity market as
an MDP [63]. The model optimised the trading decision in the day ahead
market considering seven days planning horizon. The authors introduced in
the model data of the competitors and historical data.

Bunn and Oliveira developed a multi-agent implementation for power
assets pricing in the British market [64]. The model replicated the market
framework in the 2000s. Each agent corresponds to a power asset; they try
to learn the policy to compute the optimal daily profit and the number of
bids accepted in the market.

Weidlich and Veit developed in [65] an agent-based simulation model
for three interrelated markets such as the day-ahead market, the balancing
market and the C02 emissions market. The aim is to find market signals
across different exchanges.

Löhndorf and Minnine [66] model day-ahead power market as an MDP,
hedging the risk with storing devices. The authors find the optimal bid-
ding strategy for hybrid models between renewable power and energy stor-
age by dynamic programming. They show that approximate policies using
RL algorithms outperformed optimal policies obtained linear programming
algorithms. The same authors optimise the operations of hydro storage sys-
tems in both the day-ahead and intraday market in [67]. They find the
optimal bidding strategy through dual dynamic programming.

The optimal charging plan for an electric vehicle fleet was studied by
Vandael et al. in [68]. The implementation tries to find the optimal day-
ahead schedule by Q-learning. The algorithm works as follows: First, the
power is purchased in the day ahead; then, an aggregator sequentially con-
trols the charging for each vehicle, calculating the cost of this potential
schedule. The trading system trades-off between low prices in the DA mar-
ket and the potential imbalance costs.

Boukas, Ernst et al. researched intra-day bidding strategies in the Ger-
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man market using DQN in [6]. The work uses order book information to
find the optimal trading strategy for a storing device. This agent may store
power, sell power or idle at each timestep trying to maximise the profit
through the horizon. The RL strategy makes more profit than a heuristic
considering just the current market information. The same authors in [69]
tackled the problem of an operator of a microgrid participating in the intra-
day market. The work uses Q-learning to decide whether the agent adjusts
its trading schedule based on the current knowledge of the market. The
model aims to maximise the profit of the microgrid under the operational
constraints of the microgrid. The goal is to find the best orders in the order
book through the trading horizon.

François-Lavet et al. studied in [70] the efficient operation of storing
devices in microgrids powered by photovoltaic panels. The work models a
residential customer that wants to optimise the operation under unseen solar
irradiance and electricity demand.

A dynamic pricing implementation and energy consumption scheduling
with RL in a microgrid was implemented by Kim et al. [71]. The model
proved to learn and proposed energy consumption scheduling to reduce cost
on a customer basis. xs Cheng and Powell in [72] introduced an MDP
model for the frequency regulation problem to find the optimal control of
a storing device. They use nested dynamic programming to find arbitrage
opportunities within the planning day.

Bertran and Papavasiliou studied threshold policies to participate in the
German continuous intraday market [73]. The work use policy function
approximation to find the optimal price levels at which bids in the market.
The objective function to maximise includes the accumulated price in the
session and the real-time price. The modelled agent is purely speculative.

Peters et al. framed a broker agent for retail electricity trading in [74].
They use SARSA to maximise the profit in the long-term using market sig-
nals having made the feature selection of the inputs with genetic algorithms
and Hill Climbing.

Wang et al. in [75] used RL to find the Nash equilibrium among a set of
smart microgrids. The framework enables each microgrid to maximise the
revenue by a private strategy. The data is only exchanged with a central
unit, and these microgrids lack knowledge about the others.

Xiao et at. implemented in [76] an energy trading model for microgrids
where each agent tries to leverage the local power production with the local
demand. DQN solves the optimal trading strategy for the case of a sys-
tem with many microgrids. The models consider wind production, price
forecasting and historical energy prices.

Fan et al. in [77] developed a multi-agent system and sequential cluster-
ing to learn the optimal pricing strategies for retail customers in London.

Liu et al. implemented A2C algorithms to control the heating and cool-
ing an office building in [78].
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An optimal energy management system for a large-scale smart home was
implemented by Yang et al. in [79]. They build a collaborative A2C that
outperform basic heuristic and A2C, achieving 24% cost reduction and 5%
peak load reduction.

Glavic, Fonteneau and Ernst present an extended survey on RL for elec-
tric power decision and control in [80]. They gather past research on the
topic and outline future trends in the power sector: distributed energy pro-
duction; increase in the data available; distributed transactions systems;
widespread introduction of domestic demand response devise.

Since 2012, Power trading Agent Competition (PowerTAC) [81] provides
an open-source platform to explore the integration of intelligent agents into
the electricity market. This worldwide competition run on an annual basis
and several research institutes and universities participate. The competi-
tion illustrates how the market has moved from dynamic programming ap-
proaches towards DRL implementations. In 2013, Urieli and Stone won the
competition with a value-based model by using lookahead policies to solve
the MDP models [82]. Then, the winning team in 2014 and 2017 uses ad-
aptive Q-learning to capture the trends of the market. The bidding process
uses the predictions for pricing[83] based genetic algorithms and aggressive
pricing. They introduced a prediction for customer demand using SARIMA
models. Again in 2015, D. Urieli et al. in [84] outperformed the rest of
participants by an improved version of the lookahead policies. Also, they
included demand and cost predictors in the decision-making process. Other
participants also used Q-learning in their models [85] with a Monte-Carlo
Tree Search. In 2018, Ghosh et al. [86] won the competition, including
weather data for better demand forecasting. The model builds the price
based on order book data, current prices in the market, weather and imbal-
ance prices and quantity.
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Chapter 5

Proposed trading framework

In this chapter, we describe the proposed RL implementation for the intra-
day power trading problem. First, the document describes trading execu-
tion and simulation. Then, the document details the trading formulation in
the form of an MDP. Finally, the chapter includes how to evaluate the per-
formance of the RL implementation benchmarking results against a baseline
strategy.

The following terms are explained before to facilitate the readers’ under-
standing: trading model is the MDP that characterises the trading strategy
on which the agent operates in the market; trading framework is the simu-
lator of the trading environment, this framework tries to recreate the intra-
day power market behaviour in continental Europe; trading data describes
the data available for a trader at a given time in the past, including the
order book data and the rest of datasets considered in the research.

The research uses historical data from several sources to train and test
the model.

5.1 Trading Simulation

Agent’s trading session starts with a random initial imbalance and finishes
either at market closure or when the agent imbalance is zero. The diagram
5.1 shows the agent workflow. The agent starts with an initial imbalance,
and the agent’s objective is to match orders in the LOB following the optimal
strategy that maximises the PnL.

The framework formulates the power trading problem as a discrete se-
quential process. Each agent tries to reduce the initial imbalance until the
end of the trading session. At each step, the agent uses the action output of
the learned model to find matching orders according to the type of imbal-
ance. For positive imbalances, the agent matches buy orders at action price
level or higher. On the contrary, for negative imbalances, the agent matches
sell orders at the action price or lower.
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Figure 5.1: Trading framework workflow.

The initial open position could be either a positive or a negative imbal-
ance within a range that does not impact the market dynamics.

The modelling of the market specifies the following parameters: agent’s
market session duration, step time (trading frequency), number of parallel
agents and type of imbalance (only short, long or mixed).

Figure 5.2 displays the agent’s trading market, operating the last n hours
of the intraday market before the balancing market. While running a multi-
agent configuration, all the parallel agents learn over the last n hours of
each market. The trading frequency controls the number of trading steps
per episode.

At the last step of the market, if the agent has an open position in the
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market, the framework forces the agent to close out its position in the market
regardless of the price. If the last action price does not find a matching order
by the given action price, the agent matches the best order available to close
the position. This fallback is required because the balancing market is out
of the scope of this research.

For example, a trader has to adjust its an initial imbalance of + 15
MWh for the trading instrument 10 am. Considering a duration 8 hours
agent’s market duration and 15 minutes trading frequency; the agent runs
from 1 am to 9 am, during the last 8 hours of the market session. The first
time step occurs at 1 am, the agent decides whether it participates in the
market based on the trading strategy. The second step occurs at 1:15 am,
the decision-making process continues every 15 minutes, and so forth until
the end of the market for the agent.

 12:00 15:00     H -1 
Day before delivery Delivery day

Day 
ahead 

auction 

Start 
intraday 
market 

End 
intraday 
market 

Power 
delivery 

Agent’s market 

Figure 5.2: Agent’s market in the short-term power trading markets.

5.2 Trading execution

The agent cannot interact directly with the orders present in the LOB be-
cause these entries are past orders, nor submit orders to the EPEX platform.
Nevertheless, this agent can hypothetically interact with these orders and
match the available orders in the LOB at the trading time to learn the op-
timal trading execution. The trader crosses the spread matching the best
order.

The LOB entries detail timestamp of creation, modification and cancel-
lation. If an order was either partially or fully matched, the order accounts
for the volume traded and the timestamp when that matching happened.

The trading framework uses these timestamps information to interact
with the orders. Once the trading framework finds a matching order, the
following information is adjusted accordingly to the order found 5.1: (1)
agent updates its open position in the market. (2) framework amends the
entry in the LOB, setting the order as executed or partially executed;
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Note Some of the matched orders were matched by other market parti-
cipants on a later stage in time. The simulation of the market assumes that
the small volume traded by an agent would have no impact on the dynamics
of the market. This assumption lies in the fact that the initial open position
is relatively small in comparison to the total traded volume in a session. The
author acknowledges that every transaction in the order book may change
the market prices. Nevertheless, this approach reflects better the market
rather than building a market simulator.

5.3 MDP framework for power trading

As seen in the related work review 4.1, the sequential decision-making pro-
cess of a power trader can be formulated as an MDP.

(a) Single agent trading formulation. Modified image from [1].

(b) Multi agent trading formulation.Modified image from [87].

Figure 5.3: Trading problem in the form of an MDP.

In the figures 5.3, k indicates the trading step. For example, Ak denotes
action at step k.
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Figure 5.3a illustrates the trading configuration for a single agent. An
agent trader places a bid in the market based on its policy. The trading
framework provides a reward and an observation of the market environment.
Based on this reward, the agent improves its policy.

Whereas, the figure 5.3b reflects a multi-agent setup. Unlike the previous
case with a single agent, the superscripts and subscripts identify the agent.
For example, a2

k2
refers to the action at the step k2 of the agent number 2.

This configuration extends the single-agent approach, running n agents in
parallel which interact with the trading framework.

The rest of the section describes the MDP tuple. First, it details the
action and observation space. Next, this discusses the reward function, the
policy and the discount factor.

5.3.1 Agent

Each learning agents recreates a power trader adjusting its open position
in the intraday power market for one trading instrument at a given day.
The framework enables up to 24 independent agents running in parallel
corresponding to the 24-hourly instruments.

The model is configured as a decentralised non-cooperative multi-agent
system 3.1. Each agent is unaware of the situation of the other agents,
which means that it makes decisions on the basis of the information available
for that hour. As described in [21], agents will try to learn a policy to
solve related tasks, Each agent operates in the market following the trading
strategy defined by the learned policy.

Agent’s market 

n hours before delivery -1                    Delivery hour  -1 

Figure 5.4: Trading framework recreates the market status and environment
by taking a snapshot of the data at trading time (red line).

5.3.2 Observation Space

The research uses time-series data from several sources to learn optimal
trading execution. The data includes order book data, market and grid in-
formation, trading instrument information and forecasted weather informa-
tion.
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The European Network of Transmission System Operators for Electri-
city (ENTSO-E) provides with a transparency platform that collects and
publishes data about the pan-European power market [88].

Order book

The framework processes the LOB data sequentially, computing several data
points that summarise the order book status at a given time. As illustrated
by 5.4, the following variables are computed at each time step during the
agent’s market: accumulated volumes, averages prices and volume-weighted
average price. These references describe the market status enabling the
agent to capture the trends of the market. The data is segmented for
executed, non-executed and expired orders. The market exchange EPEX
provides this market data through their API.

Prices information

The price data include information regarding the DA auction and the DA
capacity auction in terms of prices and volumes. The data is open and
available at the ENTOS-E portal.

Weather

The model uses proprietary data from several providers in Germany last
available at trading time. The data includes wind, temperature, precip-
itation forecasts in several regions of Germany. The trading framework
aggregates the input on an hourly basis.

Production and demand forecast

Several data points regarding the scheduled production from several power
assets and forecasted demand. Publicly available data from ENTOS-E
portal.

Trading Instrument information

The instrument datasets provide the following details: the day of the week
and month, whether it is a bank holiday or weekday, the hour and the season.
Dataset created specifically for the research.

Data normalisation The trading framework pre-processes the input data
before using it for the learning process. The RL models learn better from
stationary data in which mean, variance and autocorrelation are constant.
The input variables require normalisation because of the great difference
between the scales across the features. The normalisation does not change

36 Deep Reinforcement Learning for Intraday Power Trading



CHAPTER 5. PROPOSED TRADING FRAMEWORK

the underlying data distribution and speeds up the convergence process. The
normalisation techniques in the proposed implementation are the following:

• scaled to a range based on the maximum and minimum values of the
xnew = (xold −Xmin)/(Xmax −Xmin)

• moving average that represents the number of standard deviations
from the current mean. xnew = (xold − µ)σ

Where X represents the data series, Xmax and Xmin the maximum and the
minimum values of the series respectively, µ is the accumulated mean and
σ the accumulated standard deviation.

The first technique is applied to the data that does not change during
the trading session, such as market prices and volumes, power scheduling,
demand forecast and instrument information. Differently, the series of data
that changes throughout the session is normalised following the second tech-
nique.

5.3.3 Action Space

Real-world applications entail a high-complexity action space. For example,
the bidding price requires a fine grain precision to achieve optimal perform-
ance, a discretisation of the action space weakens the profit potential.

To participate in the power market and match the orders present in the
LOB, the distribution of two variables is relevant: price that represents
a price threshold at which the agent sells or buys power; volume that
indicates the volume of power willing to trade. Both values require precise
values because of this impact the overall strategy. As such, the trading
models may consider a bi-dimensional continuous action space to operate in
the market. Also, as a simplified approach, the work may also consider a
binary decision whether to trade at the best price available.

The goal of the model is to learn the action space representation that
maximises the Profit and Loss (PnL) of the agent. The wide range of the
values for both variables requires an alternative implementation. Instead
of learning the action representation for both variables directly, the author
proposes learning a factor to build price and volume simplifying the action
space distribution

In the case of price, that generally ranges between −100e/MWh and
200e/MWh, learning the optimal representation in such a broad-spectrum
result challenging. However, the spread in a trading session is much much
more narrow around a value.

By market design, there is a minimum price interval of 0.1e/MWh and
minimum trade volume of 0.1MW [89].

A learning a factor combined with a price level present in the LOB
book facilitates the process. Learning a factor combined with a price level
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present in the LOB book facilitates the learning. Likewise, the current or
initial imbalance combined with the learned factor serves as a proxy for the
volume bid.

The framework requires to normalise the action because RL algorithms
rely on a Gaussian distribution for continuous action spaces. This distri-
bution is not bounded, and thus the action requires from clipping. In the
case of the volume, this action ranges between 0 and 1, taking this as a
percentage of the volume. In the case of the price, the framework clips the
action between -1 and 1.

This approach narrows the range of the action space distribution keeping
the action distribution within a more limited range.

5.3.4 Policy

The policy represents the trading strategy followed by the agent. Similarly
to the typical MDP formulation, the trading MDP is composed of the agent
trader and the market simulator. Each step, the agent trader outputs a bid
for a price and a volume. Depending on these values, the agent may find a
matching order. Then, it receives a reward according to the matched order
and the observation of the trading scenario.

Unlike the case of VWAP strategy where the behaviour was driven simply
by a price level, RL Strategy aims to learn the optimal trading policy char-
acterised on a price level and/or volume size.

5.3.5 Reward

As explained in the reinforcement learning chapter 3.1, the reward and the
discount factor define the goal of the problem.

That is to say, finding the optimal trading strategy to adjust the position
of the agent in the intraday market maximising the PnL. Also, this strategy
should reduce risk exposure avoiding large open positions at the end of the
trading session.

As described in the action section, there is not an absolute price level
across the different trading instruments. The price changes during the trad-
ing session and it depends on the trading product, following the dynamics of
the market. Therefore, the reward formulation requires price level according
to its market. The reward function provides scalar feedback based on how
good or bad was the price level matched respect to the best order present
in the LOB.

The cash flow of the operation cannot model the reward directly because
of the random initialisation. First, the agent would receive a positive reward
only in the long positions and negative otherwise. Secondly, the initial
volume size would influence the range of rewards. The objective is to learn to
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operate different trading products, being able to close various open positions
within a range.

The reward function models a signal to avoid significant exposure at the
end of the market, rewarding early trades in the session. The goal is to offset
potential losses. If the agent is forced to close an open position at the end
of the session, the usual reward formulation includes a penalisation.

Note In the rare case that there is no liquidity at the end of the market,
and thus the position cannot be adjusted, receiving a substantial penalty.
These episodes are considered in the learning process but dismissed for the
PnL analysis.

reward(price, priceref , volume, tstepcurrent, tstepsession, imbinit, imbcurrent) =

factorP ∗ sign(price− priceref )
volume

imbinit
− factorI imbcurrent

imbinit
− factorT ∗ tstepcurrent

tstepsession

Where there are the following variables considered in the reward functions:
price,volume are the matched price and volume; priceref is the price taken
as a reference to compare the performance; tstepcurrent the current time step
within the number of steps in the trading session tstepssession; imbinit the
initial imbalance; imbcurrent the current imbalance.

The first part of the reward function measures the goodness of the price
paid. Second and third fractions characterise the trading behaviour, reward-
ing early trades, for example. The reward function modulates the import-
ance of each part of the equation, based on the factor weigh. P, I and T
stand for the price, imbalance and timestamp respectively. The value of
each factor models the trading problem. For example, if we are just inter-
ested in the PnL of the system, the factor corresponding to the price should
outweigh the other two. In another case, we can formulate the reward to
avoid large open positions at the end of the trading horizon by outweighing
the imbalance factor. The goal of the problem is to find a trade-off between
profit and risk, and these three factors can be used to define the reward
function better.

More details about the price references appear in the results section.

5.3.6 Discount factor

The discount factor defines the interest on the future cash flow. The episodic
trading framework suggests that a γ = 1 is the most appropriate because
all the orders in the same market session have the same cash interest.

5.4 Performance evaluation

This research aims to assess whether an ATS based on deep RL could out-
perform the profitability of quantitative strategies reducing market risk ex-
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posure. Several metrics can be used to benchmark the performance of the
across the different RL set-ups, such as the loss and advantage. However,
only financial metrics facilitate easy comparison between quantitative meth-
ods and RL implementations in terms of trading behaviour and economic
results. The performance results are measured on the testing phase by com-
paring the outcome of using both strategies for the same initial condition
(trading instrument and initial imbalance).

Economic A simple metric to look is the VWAP paid for the short and
long positions. The accumulated PnL ratio between the RL strategy and the
VWAP strategy indicates how the agent performs compared to the baseline
strategy (VWAP Strategy).

PnL ratio =
PnL RL strategy

PnL baseline strategy

The results are presented separated for short and long position because
mixed positions have both long and short positions, and thus a unique
VWAP does not reflect the cash flow properly. These metrics are identi-
fied later in the results section as Short PnL ratio or Long PnL ratio.

If the RL strategy makes more profit than the VWAP strategy in the
long positions, the ratio is higher than one, being lower than one in the
opposite case. If the RL strategy incurs in fewer costs than the VWAP
strategy in the short positions, the ratio is lower than one, being higher
than one otherwise.

In conclusion, the implicit objective is to reach a Long PnL ratio greater
than one and a Short PnL ratio less than 1. If the prices are positive,
trading generates a positive cash flow while selling power and negative oth-
erwise. For example, if a Long PnL ratio amounts to 1.02, this means that
RL strategy makes 2% more profit the baseline strategy on positive imbal-
ances. Likewise, if Short PnL ratio is 0.98, the RL Strategy cost is 2% lower
compared to the baseline strategy on short positions.

The expected outcome of the RL strategy is to be more profitable in
long positions and less costly in the short positions.

Risk Short-term power market trades different products for immediate
delivery once the session finishes. The open imbalance at the end of the
intraday session, the final imbalance is a good indicator of the agent’s risk
profile. These results are indicated in the next section as imbalance at last
trading step. Although this is not strictly the final imbalance, as described
in the previous section, the agent’s position is closed at the last step. The
higher the ratio between the imbalance at the last trading step and the
initial imbalance, the higher the risk exposure.
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Results and discussion

This chapter describes the trading market, explaining the training and test-
ing phase. The rest of the chapter is devoted to the model evaluation,
showing the results for the different framework and MDP configurations.

6.1 Experiment details

6.1.1 Market

The continuous intraday German market was chosen for the work because
of the large share of renewable energy, Therefore, the market became more
liquid and volatile in comparison with neighbouring countries.

6.1.2 Training

The training episode starts in January 2015 until June 2017 (911 days).
These days amount to 21864 possible hourly products.

The simulations run sequentially within the same month for the length
of the month in days. This workflow is an intended behaviour to make the
training process more data-efficient.

The framework runs up to 24 parallel learning processes over the first
month (January 2015) for 31 random days and n-parallel trading instru-
ments. This configuration makes up to 744 different combinations (31 days
x 24-hourly products ). Once, the first month is simulated, the framework
moves to the second month until the end of the training data (June 2017).

The number of epochs required to find a successful strategy depends on
the settings of the trading framework. As observed in figure 6.7, training
for longer does not always improve the performance of the models once they
converge to a policy. Some policies do not converge to a policy able to
outperform the VWAP strategies.

The average returns suggest that the agent converges around the epoch
number 12 (800k steps) in figure 6.7. However, some of the policies are
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unstable and do not perform well against the baseline strategy. The learned
model is stored once the learning process finishes and the testing phase
reuses this model. Under these conditions, the training phase amounts to
1.2M or 2.4M steps. As a reference, 35 epochs * 12 parallel agents * 16
timesteps per session * 365 days ≈ 2.4M.

The model trains over the same dataset several times; however, the ran-
dom initialisation makes very unlikely that new learning episodes result sim-
ilar to any past training episode. Each trading session for the agent varies
in imbalance volume and trading instruments.

6.1.3 Testing

The testing episode lasts for six months, from July 2017 until December
2017. This phase amounts to 25K (182 days * 12 parallel agents * 16 time
steps) steps when tested one epoch. This phase runs under like conditions
as the training phase, having regard to the number of parallel agents and
framework settings.

The PnL ratio is used to benchmark the economic performance of dif-
ferent runtimes, as described in section 5.4.

6.1.4 Codebase details

The trading framework is built in Python and uses several libraries such as
Pandas, Numpy and Tensorflow.

The work follows the OpenAI gym modelling to frame the trading en-
vironment. To train and test the models, the author uses stable-baseline
as a boilerplate package. The work extends the stable-baseline codebase to
design a complete trading framework.

6.1.5 Graphical results

Tensorflow provides a visualisation tool for machine learning implementa-
tions called Tensorboard. This tool generates the evaluation graphs shown
in the rest of the chapter.

There are same highly volatile metrics such as the reward, and the imbal-
ance at the end of the session. These figures change rapidly every episode de-
pending on the initialisation (imbalance and trading product). Exponential
weighting produces smoother curves removing these significant variations.
A light colour in the graphs represents the real value of the metric, whereas
bold colours indicate the smoothed curves.

6.1.6 Technical setup

The simulations run on a 32 cores Intel Xeon W-2195 CPU 2.30GHz machine
with 256GB RAM. A GPU Nvidia Quadro P2000 was used to carry the
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gradient calculations. The model was running on Ubuntu 18.04, CUDA
10.1 and Tensorflow 14.0.

6.2 Framework settings

Fixing some framework parameter facilitates a tractable comparison between
the different simulations. This configuration allows a comparison between
different model performances. The following variables are fixed for all the
agents unless stated otherwise: agent’s markets last for 8 hour with trading
frequency is 30 minutes, amounting to 16 trading steps per episode; the
random initial imbalance ranges between ±30MWh.

6.2.1 Training behaviour

As the training phase progresses, the agent reduces the number of operations
per trading session. Figure 6.1 shows model matching around 2.5 orders per
trading session at the beginning of the trading phase. This number drops to
an average of 1 only after 200k steps. The behaviour seems adequate when
the average volume to trade, an average of 15MWh, is small enough to be
matched at once. The agent tries to find the optimal trading execution time,
and this is supposed to be the only best price level. At this price level, the
agent fully executes the trade with other counterparties.

Figure 6.1: Training behaviour: average number of trades per trading ses-
sion.
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6.2.2 Network architecture

There are two architectures used for the function approximation problem:
multilayer perceptron (MLP) and long short-term memory (LSTM). See
more details about different architectures in [90]. MLPLSTM policy network
achieves a consistently better performance across different runtimes. The
image 6.2 shows the PnL ratio for short position; the runtimes below 1, and
thus achieving a better performance than the baseline strategy.

Figure 6.2: Economic performance comparison: different network architec-
tures.

6.2.3 Imbalance type

The agent may learn to trade over different trading scenarios depending
on the type of imbalance. The initial random imbalance ranges between
±30MWh, and thus the agent should learn how to trade both positive and
negative imbalances.

Custom models configuration bids only sell orders(long type) or sell or-
ders (short type) according to the imbalance type. These models are trained
separately either in positive or negative imbalance, respectively. Universal
model operates both types of imbalances with a unique model learning from
mixed experiences.

Based on the results, learning models find harder to capture the market
dynamics in the mixed (long and short imbalance) scenario.

The results in 6.3 display that a custom model for each type of imbal-
ance generally performs better than the mixed time with the same reward
function. The assumption is that the model generalises the market dynam-
ics better on a particular imbalance problem. The difference amounts to 2
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% in the best case.

Figure 6.3a shows the custom model performing better than universal
ones, having a lower Short PnL ratio. Custom models also outperform
universal models for long positions, figure 6.3b shows higher Long PnL ratio
for these models.

In practice, this double configuration would not be an issue if deploying
into production. Instead of having a universal model for any imbalance,
each model trades just on the type of imbalance trained.

(a) Short PnL ratio comparison. Custom model trained only in short type positions
(negative imbalance) performs 2% better than baseline strategy.

(b) Long PnL ratio comparison. Custom model trained only in long positions
(positive imbalance) performs 1% better than baseline strategy.

Figure 6.3: Performance comparison. Custom vs universal imbalance mod-
els. Testing phase.
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6.3 Environment settings

6.3.1 Reward

As described in the previous chapter, building the reward function based on
price computed from the LOB provides the best results.

The reward functions should output a reward based on the quality of the
executed order but also in the idle steps.

The framework computes or searches a price reference that can be static
or vary during the trading session. These prices set a threshold below which
the RL agent underperforms the price level reference or outperforms oth-
erwise. The reward function may reward or penalise depending on this
reference. There are three main approaches to obtain this threshold:

• VWAP of the executed orders for the current trading session, this
reference evolves with the market. Denoted as BestVWAP.

• VWAP of the executed orders for the complete trading session, past
and future orders. Denoted as CompleteVWAP.

• best price executed in the trading session. Later found that this price is
not always representative because of the frequent presence of outliers.
Denoted as BestPrice.

Figures 6.4a and 6.4b display the importance of the reward in the eco-
nomic output.

In the first case for the short positions 6.4a, there are several strategies
that outperform the baseline, cutting the cost by 3.5%. Whereas for long po-
sitions in 6.4b, there are only three strategies that outperform the baseline,
increasing the profit by 2.5%.

As shown in figure 6.4, BestVWAP outperforms the rest of approaches
for both positive and negative imbalances. BestPrice configurations offer
the worst results for all simulations.

As described in section 3.1, the reward determines the objective of the
problem. Therefore, the models require a reward function that effectively
capture the dynamics of the market.

Second, the reward function must reward the rest of the time steps when
the agent does not trade. There could be two reasons for this: either the
open imbalance is already zero or the price level from the action space does
not match any order. The results show that introducing a small reward if
the imbalance is closed before the end of the trading session shifts the trades.

The figure 6.5 show how a parameter that affects the ratio of the open
position to its initial imbalance at the end of the session. The higher the
reward for closing out the position, the sooner the model zero out the initial
imbalance. However, this should not undermine the objective of the main
objective of outperforming the result of the baseline strategy. Different
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(a) Short PnL ratio for different reward functions in custom models configuration.

(b) Long PnL ratio for different reward functions in custom models configuration.

Figure 6.4: Benchmarking different reward approaches. BestVWAP outper-
forms other approaches for both positive and negative imbalances.

reward objectives lead to different behaviour during the trading session.
The model trades-off between early price performance and early trades.

Figure 6.6 shows when each simulation ends its trading session on aver-
age. Different learning processes lead to a different agent’s behaviour during
the testing phase. The reward definition modulates when the agent zeros
out its initial position.

Ending at a precise moment in the trading session does not indicate the
goodness of the models. However, the models have not learned to operate
in the market if they do not exploit market opportunities. This situation
can be observed when models end on average at the very beginning or very
end. When the models tend to finish at the end of the session, the frame-
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Figure 6.5: Average imbalance (%) at the last trading step. Four different
reward functions based on the BestVWAP approach.

work forces to close this position is forced to close by the framework. The
rest of the models end on average at the 20%, 30% or 70% trading session
percentage following different reward functions.

Figure 6.6: Average session duration (%) comparison. Seven different re-
wards functions based on the BestVWAP approach.

Figure 6.7 displays the average reward per episode. These models con-
verge when the simulation runs for approximately 400k steps. In the case
non-convergent models, the reward is more volatile, and its value changes
substantially during the training phase. These policies do not reach a stable
value throughout the training phase, unlike the convergent ones.
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Figure 6.7: Policy convergence comparison. Five different reward functions
based on BestVWAP approach.

6.3.2 Parallel agents

For the A2C settings, the formulation of a multi-agent system that trains
several agents in parallel. The network weights are updated at the end of
each episode, and the agent’s status reset for the following trading session.
The results show that increasing the number of parallel agents does not
guarantee better results, rather the opposite. Models with many agents
do not converge to an optimal policy. The result may be counterintuitive;
Initially, the author believed that a few parallel agents running in parallel
would lead to better results, however, for this implementation, the results
in figure 6.8 suggest that the model is not able to economically leverage a
greater number of agents.

Figure 6.8: Multiple parallel agents comparison.
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6.4 Performance benchmark results

The assessment of the results relies on the baseline strategy. Table 6.1
contains the results that summarise the performance of the RL strategy.
The table indicates the following information for each simulation: reward
approach used, type of imbalance used in the learning process and the Pnl
for The configurations outlined below lead to successful outcomes:

• Strategies that use the VWAP price level in the reward function can
outperform the baseline strategy.

• Recurrent architectures (LSTM) capture better the long term depend-
encies in the underlying data than feedforward neural networks (MLP).

• Custom model configuration for each type of imbalance offers better
results than a unique model for positive and negative imbalances.
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Chapter 7

Conclusions

The following chapter answers the research questions formulated in the in-
troductory chapter 1.2. To conclude, the author finishes detailing some
limitations of the current proposed framework, suggesting areas for future
research.

7.1 Conclusions

After reviewing the results, the author concludes that RL is suitable to
solve open positions in the intraday power market. The MDP formulation
captures the sequentiality of the problem and the inherent feedback of the
trading process.

The trading problem is a complex task that varies every trading session;
finding an optimal and stable policy remains an unsolved challenge. Ac-
cordingly, action space requires a precise value to select the optimal price
and volume. A faithful representation of the market makes the observa-
tion space intractable. Thus, the environment synthesises the status of the
trading scenario.

The model is meant to trade-off profit and risk exposure; therefore, the
definition of the reward function that captures both is one of the challenges
of the thesis.

The best results in table 6.1 show a 3 % profit in the positives imbal-
ances and 3.5 % cost reduction in the negatives imbalances compared to the
baseline strategy (VWAP Strategy). Overall, some models outperform the
PnL of the baseline strategy.

One may conclude that the results were satisfactory because some of the
models were able to beat the baseline, a well-known metric in the sector to
assess the trading performance. Nevertheless, the model outcome did not
reach outstanding returns as in other areas.

Having said that, the author warns that the learning models are unstable
across different trading simulations. In the previous chapter, the author
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outlined some configurations that generally performed better than others.
These recommendations are not always certain but serve as a guide for
decision-making regarding further implementations and research.

Based on the limitations and future work outlined below, the author
believes that iterating over the current model and framework could lead to
better performance and more stable models.

7.2 Limitations and future research

The present study holds several limitations, including technical details but
also on the market design.

The research may be extended to capture the complexity of the power
markets better while leveraging the advantages of the latest RL research.
Although the author tried to build a model close to the true model, the
model suffers from some limitations. Future research may iterate over the
current implementation.

After working towards an optimal model to find the best trading execu-
tion, the author identifies the following technical and conceptual improve-
ment areas for the current trading model:

Multiple trading products The choice for the hourly product simplified
the design of the model. However, the model could escalate to work over
multiple trading instruments such as half-hour and quarterly-hour products.

Imbalance price One alternative to the VWAP price level is the imbal-
ance price. By implementing a reward model base on the imbalance price,
the problem shifts to finding arbitrage opportunities between the intraday
and balancing market.

Agent awareness In the current implementation, the agents are agnostic
about the status of the other agents running in parallel. It could be assumed
that there is a temporal correlation between subsequent trading instruments.
Therefore, including market data from consecutive hours may improve model
performance.

Universal models The current model uses a universal model for all hours.
This setup does not make a difference between hours when the market be-
haves quite different across the day. Implementing a model per instrument
may lead to a better trading execution. A first approach may be exploit-
ing models for a block of hours, segmenting between peak and valley hours.
Even if this configuration scales up to four different models, this segmenta-
tion may provide better results. In line with this approach, the models can
be segmented based on seasons or hours.
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The same approach was introduced already in the case of imbalance type
modelling. The results proved that the learner converges to a better policy
if used only for positive or negative imbalances.

Multi-agent model The results do not provide much better results while
using many parallel agents. This issue should be studied thoroughly be-
cause the research suggests that a greater number of agent speeds-up the
converging process. However, faster convergence does not guarantee better
economic performance.

Reward function Defining a function that captures the problem object-
ive becomes the real challenge in the RL problem definition. The models
require more extensive research on this function. The agent only learns by
the reward feedback, and hence, the reward function must capture all the
objectives of the problem.

Observation space The observation space always may be enlarged, in-
cluding more inputs from the grid, weather and demand and production
forecast. Note that because of the curse of dimensionality, the number of
samples to train the model should grow as well.

The normalisation of the datasets could boost the performance of the
models. Current implementation neglects the difference between datasets
that change and those that remain fixed during the trading session.

Action space The output of the model characterises how the agent parti-
cipates in the market. As now, the models use a continuous unidimensional
or bi-dimensional action space as a proxy for the trading price and the trad-
ing volume.

Simplifying the action towards a unidimensional action for the price level
regardless of the volume may facilitate the policy convergence. Also, another
alternative is to use a discretisation space subject to the open position range.

It is worth to consider designing an action space based on the spread of
the market.

Market design The trading framework offers the flexibility to change the
market duration and the trading frequency. As detailed previously, the res-
ults were benchmarked on 8 hours market duration with a trading frequency
of 30 minutes. The configuration may be changed to study if different market
sessions and different trading frequency lead to better performance. Market
dynamics suggest shorter market duration and a higher market frequency
could offer market opportunities.
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Hyper-parameter tunning Parameters such as the discount factor or
the learning rate have a crucial impact on the credit assignment and the
learning process, respectively. Tunning these parameters requires further
work. For example, the de facto choice discount factor λ equals to one in
most of the simulations.

Risk The author did not consider specific risk metrics in the development
of the model. These constraints were implicit within the reward function or
the framework design. However, it is well worth digging into the explicit in-
clusion of risk factors. Sharpe Ratio is a standard risk-adjusted return metric
that measures the strategy return versus a benchmark over the strategy’s
volatility. This can be introduced in the reward function to modulate the
risk-adjusted return.

Compliance and liability Regulatory compliance lies out of the thesis
scope; however, this may prevent AI models from being deployed into pro-
duction. AI research advanced faster than regulation. As today, it is not
yet clear how to incorporate accountability, oversight and legal liability in
the automated trading design. More details and discussion may be found in
[91] and [92].

56 Deep Reinforcement Learning for Intraday Power Trading



Bibliography

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018. 1, 2, 11, 12, 18, 34

[2] G. Tesauro and R. Das, “High-performance bidding agents for the con-
tinuous double auction,” in Proceedings of the 3rd ACM conference on
Electronic Commerce, pp. 206–209, ACM, 2001. 2

[3] J. Moody and M. Saffell, “Learning to trade via direct reinforcement,”
IEEE transactions on neural Networks, vol. 12, no. 4, pp. 875–889,
2001. 2, 25

[4] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai, “Deep direct reinforce-
ment learning for financial signal representation and trading,” IEEE
transactions on neural networks and learning systems, vol. 28, no. 3,
pp. 653–664, 2016. 2

[5] G. Li and J. Shi, “Agent-based modeling for trading wind power with
uncertainty in the day-ahead wholesale electricity markets of single-
sided auctions,” Applied Energy, vol. 99, pp. 13–22, 2012. 2

[6] I. Boukas, D. Ernst, A. Papavasiliou, and B. Cornélusse, “Intra-day
bidding strategies for storage devices using deep reinforcement learn-
ing,” in International Conference on the European Energy Market,  Lódź
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