17 research outputs found

    Pharmacological Interventions to Ameliorate Neuropathological Symptoms in a Mouse Model of Lafora Disease

    Get PDF
    14 páginas; 9 figuras.Lafora disease (LD, OMIM 254780) is a rare fatal neurodegenerative disorder that usually occurs during childhood with generalized tonic-clonic seizures, myoclonus, absences, drop attacks or visual seizures. Unfortunately, at present, available treatments are only palliatives and no curative drugs are available yet. The hallmark of the disease is the accumulation of insoluble polyglucosan inclusions, called Lafora bodies (LBs), within the neurons but also in heart, muscle and liver cells. Mouse models lacking functional EPM2A or EPM2B genes (the two major loci related to the disease) recapitulate the Lafora disease phenotype: they accumulate polyglucosan inclusions, show signs of neurodegeneration and have a dysregulation of protein clearance and endoplasmic reticulum stress response. In this study, we have subjected a mouse model of LD (Epm2b-/-) to different pharmacological interventions aimed to alleviate protein clearance and endoplasmic reticulum stress. We have used two chemical chaperones, trehalose and 4-phenylbutyric acid. In addition, we have used metformin, an activator of AMP-activated protein kinase (AMPK), as it has a recognized neuroprotective role in other neurodegenerative diseases. Here, we show that treatment with 4-phenylbutyric acid or metformin decreases the accumulation of Lafora bodies and polyubiquitin protein aggregates in the brain of treated animals. 4-Phenylbutyric acid and metformin also diminish neurodegeneration (measured in terms of neuronal loss and reactive gliosis) and ameliorate neuropsychological tests of Epm2b-/- mice. As these compounds have good safety records and are already approved for clinical uses on different neurological pathologies, we think that the translation of our results to the clinical practice could be straightforward.This work was supported by grants from the Spanish Ministry of Education and Science SAF2011-27442, Fundació La Marato de TV3 (ref. 100130) and an ACCI2012 action from CIBERER. A.B. holds a postdoctoral fellowship from the Program “Junta para la Ampliación de Estudios” (JAE-Doc) co-funded by the European Social Fund (ESF).Peer reviewe

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF

    Crystal Structures and DFT calculations of new chlorido-dimethylsulfoxide-M(III) (M= Ir, Ru, Rh) complexes with the N-pyrazolyl pyrimidine donor ligand: kinetic vs. thermodynamic isomers

    No full text
    [eng] New chlorido-dimethylsulfoxide-iridium(III), ruthenium(III) and rhodium(III) complexes with the 2-(1H-pyrazol-1-yl)-pyrimidine (pyrapyr) ligand (OC-6-N1)-[RhIIICl3(DMSO-κS)(pyrapyr)] (1a, N = 3 and 1b, N = 4); (OC-6-N1)-[RuIIICl3(DMSO-κS)(pyrapyr)] (2a, N = 3 and 2b, N = 4) and (OC-6-N1)-[IrIIICl3(DMSO-κS)(pyrapyr)] (3a, N = 3 and 3b, N = 4) have been synthesized and characterized by spectroscopic techniques and by single crystal X-ray diffraction studies (1a, 1b, 2a, 2b, a disordered crystal 3a/3b and a cocrystal 3a·3b). In all cases, the metal centers show octahedral geometry coordinated to three chloride ligands and one S coordinated dimethylsulfoxide (DMSO-κS). The coordination sphere of the metal is completed by the pyrapyr molecule. Two different coordination modes are observed: (i) the DMSO-κS is opposite to the pyrimidinic N atom (IUPAC nomenclature is OC-6-31 denoted herein as trans); (ii) DMSO-κS is opposite to the pyrazolic N atom (IUPAC nomenclature is OC-6-41 denoted as cis). For Rh(III) the kinetic product (cis) yields the thermodynamic (trans) upon heating a solution of the kinetic product and both isomers have been X-ray characterized. Conversely for Ru(III), both kinetic and thermodynamic complexes have been obtained by using different procedures. Both isomers have been characterized by X-ray crystallography and the kinetic product does not yield the thermodynamic upon heating a solution of the former. Furthermore, the Ir(III) behaves differently, since both isomers are energetically equivalent and both isomers co-crystallize in the solid state. The kinetic/thermodynamic mechanism that yields the different isomers has been studied by using theoretical DFT calculations for each metal. Finally, two Ru(II) complexes (OC-6-N1)-[RuIICl2(DMSO-κS)2(pyrapyr)] (4a, N = 3 and 4b, N = 4) are also described and X-ray characterized. They were obtained as minor products during the synthesis of 2a

    Genome-wide association and longitudinal analyses reveal genetic loci linking pubertal height growth, pubertal timing and childhood adiposity.

    Get PDF
    The pubertal height growth spurt is a distinctive feature of childhood growth reflecting both the central onset of puberty and local growth factors. Although little is known about the underlying genetics, growth variability during puberty correlates with adult risks for hormone-dependent cancer and adverse cardiometabolic health. The only gene so far associated with pubertal height growth, LIN28B, pleiotropically influences childhood growth, puberty and cancer progression, pointing to shared underlying mechanisms. To discover genetic loci influencing pubertal height and growth and to place them in context of overall growth and maturation, we performed genome-wide association meta-analyses in 18 737 European samples utilizing longitudinally collected height measurements. We found significant associations (P < 1.67 × 10(-8)) at 10 loci, including LIN28B. Five loci associated with pubertal timing, all impacting multiple aspects of growth. In particular, a novel variant correlated with expression of MAPK3, and associated both with increased prepubertal growth and earlier menarche. Another variant near ADCY3-POMC associated with increased body mass index, reduced pubertal growth and earlier puberty. Whereas epidemiological correlations suggest that early puberty marks a pathway from rapid prepubertal growth to reduced final height and adult obesity, our study shows that individual loci associating with pubertal growth have variable longitudinal growth patterns that may differ from epidemiological observations. Overall, this study uncovers part of the complex genetic architecture linking pubertal height growth, the timing of puberty and childhood obesity and provides new information to pinpoint processes linking these traits

    Can Antidiabetic Drugs Improve Male Reproductive (Dys)Function Associated with Diabetes?

    No full text
    corecore