219 research outputs found

    Investigating magneto-chemical interactions at molecule-substrate interfaces by X-ray photo-emission electron microscopy

    Get PDF
    The magneto-chemical interaction of spin-bearing molecules with substrates is interesting from a coordination chemistry point of view and relevant for spintronics. Unprecedented insight is provided by X-ray photo-emission electron microscopy combined with X-ray magnetic circular dichroism spectroscopy. Here the coupling of a Mn-porphyrin ad-layer to the ferromagnetic Co substrate through suitably modified interfaces is analyzed with this technique

    Emergence of On-Surface Magnetochemistry

    Get PDF
    The control of exchange coupling across the molecule–substrate interface is a key feature in molecular spintronics. This Perspective reviews the emerging field of on-surface magnetochemistry, where coordination chemistry is applied to surface-supported metal porphyrins and metal phthalocyanines to control their magnetic properties. The particularities of the surface as a multiatomic ligand or “surface ligand” are introduced. The asymmetry involved in the action of a chemical ligand and a surface ligand on the same planar complexes modifies the well-established “trans effect” to the notion of the “surface-trans effect”. As ad-complexes on ferromagnetic substrates are usually exchange-coupled, the magnetochemical implications of the surface-trans effect are of particular interest. The combined action of the different ligands allows for the reproducible control of spin states in on-surface supramolecular architectures and opens up new ways toward building and operating spin systems at interfaces. Notably, spin-switching has been demonstrated to be controlled collectively via the interaction with a ligand (chemical selectivity) and individually via local addressing at the interface

    Filtering DRA Array and Its Applications in MIMO for Sub-6 GHz Band

    Get PDF
    A dielectric resonator-based filtering array antenna along with multi input - multi output (MIMO) characteristics is represented in this paper. Two rectangular dielectric resonators, together with a filtering power splitter (PS) is used to get a high gain filtering response. The PS, which consists of a simple T-junction 3-dB power splitters and two pairs of band-rejection resonators, provides four transmission zeros outside the passband. Detail study with an equivalent circuit is presented to understand the working principle of the filtering PS. By utilizing this PS, a two element DRA array is designed at sub-6 GHz frequency band (3.20 GHz-3.54 GHz) with an average broadside gain of 7.8 dBi in the passband and four radiation dips outside the passband. The proposed filtering DRA array effectively suppresses the out-of-band signal, delivers sharp selectivity at band edges. Finally, coalescing the two-filtering array, a MIMO antenna system is presented here. The filtering array MIMO antenna gives reasonable port isolation of greater than 20 dB throughout the operating band. All the major diversity parameters to establish MIMO characteristics e.g. envelop correlation coefficient (ECC), diversity gain (DG), channel loss capacity (CCL), and total reflection coefficient (TARC) persists within their tolerable ranges

    Magnetic exchange coupling of a synthetic Co(II)-complex to a ferromagnetic Ni substrate

    Get PDF
    On-surface assembly of a spin-bearing and non-aromatic porphyrin-related synthetic Co(II)-complex on a ferromagnetic Ni thin film substrate and subsequent magnetic exchange interaction across the interface were studied by scanning tunnelling microscopy (STM), X-ray absorption spectroscopy (XAS), X-ray magnetic circular dichroism (XMCD) and density functional theory +U (DFT + U) calculations

    Hypertension and Cognitive Health Among Older Adults in India

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156445/2/jgs16741.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156445/1/jgs16741_am.pd

    Surface operators, dual quivers and contours

    Get PDF
    We study half-BPS surface operators in four dimensional N=2 SU(N) gauge theories, and analyze their low-energy effective action on the four dimensional Coulomb branch using equivariant localization. We also study surface operators as coupled 2d/4d quiver gauge theories with an SU(N) flavour symmetry. In this description, the same surface operator can be described by different quivers that are related to each other by two dimensional Seiberg duality. We argue that these dual quivers correspond, on the localization side, to distinct integration contours that can be determined by the Fayet-Iliopoulos parameters of the two dimensional gauge nodes. We verify the proposal by mapping the solutions of the twisted chiral ring equations of the 2d/4d quivers onto individual residues of the localization integrand.Comment: 42 pages. v2: Sections 4 and 5 partially restructured in order to describe in a more compact ad unified way the association of contours to quiver

    Antiferromagnetic coupling of Cr-porphyrin to a bare Co substrate

    Get PDF
    We report the discovery of an antiferromagnetic coupling of the magnetic moment of chromium(II) tetraphenyl-porphyrin (CrTPP) molecules to the magnetization of the clean ferromagnetic Co(001) substrate. We assign this unusual molecule-substrate exchange coupling to the less than half-filled chromium 3d orbitals interacting with Co valence band electrons via porphyrin-ligand molecular orbitals. X-ray magnetic circular dichroism, x-ray photoelectron spectroscopy, and scanning tunneling microscopy are combined with DFT+U calculations and provide evidence for a surprising type of antiferromagnetic 90∘ indirect magnetic exchange coupling

    Mortality, morbidity, and hospitalisations due to influenza lower respiratory tract infections, 2017: an analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Although the burden of influenza is often discussed in the context of historical pandemics and the threat of future pandemics, every year a substantial burden of lower respiratory tract infections (LRTIs) and other respiratory conditions (like chronic obstructive pulmonary disease) are attributable to seasonal influenza. The Global Burden of Disease Study (GBD) 2017 is a systematic scientific effort to quantify the health loss associated with a comprehensive set of diseases and disabilities. In this Article, we focus on LRTIs that can be attributed to influenza. Methods We modelled the LRTI incidence, hospitalisations, and mortality attributable to influenza for every country and selected subnational locations by age and year from 1990 to 2017 as part of GBD 2017. We used a counterfactual approach that first estimated the LRTI incidence, hospitalisations, and mortality and then attributed a fraction of those outcomes to influenza. Findings Influenza LRTI was responsible for an estimated 145 000 (95% uncertainty interval [UI] 99 000–200 000) deaths among all ages in 2017. The influenza LRTI mortality rate was highest among adults older than 70 years (16·4 deaths per 100 000 [95% UI 11·6–21·9]), and the highest rate among all ages was in eastern Europe (5·2 per 100 000 population [95% UI 3·5–7·2]). We estimated that influenza LRTIs accounted for 9 459000 (95% UI 3 709000–22 935000) hospitalisations due to LRTIs and 81 536 000 hospital days (24 330 000–259851 000). We estimated that 11·5% (95% UI 10·0–12·9) of LRTI episodes were attributable to influenza, corresponding to 54481 000 (38465000–73864000) episodes and 8172000 severe episodes (5 000 000–13 296000). Interpretation This comprehensive assessment of the burden of influenza LRTIs shows the substantial annual effect of influenza on global health. Although preparedness planning will be important for potential pandemics, health loss due to seasonal influenza LRTIs should not be overlooked, and vaccine use should be considered. Efforts to improve influenza prevention measures are needed
    corecore