4,954 research outputs found

    Fermi surface, possible unconventional fermions, and unusually robust resistive critical fields in the chiral-structured superconductor AuBe

    Get PDF
    The noncentrosymmetric superconductor (NCS) AuBe is investigated using a variety of thermodynamic and resistive probes in magnetic fields of up to 65~T and temperatures down to 0.3~K. Despite the polycrystalline nature of the samples, the observation of a complex series of de Haas-van Alphen (dHvA) oscillations has allowed the calculated bandstructure for AuBe to be validated. This permits a variety of BCS parameters describing the superconductivity to be estimated, despite the complexity of the measured Fermi surface. In addition, AuBe displays a nonstandard field dependence of the phase of dHvA oscillations associated with a band thought to host unconventional fermions in this chiral lattice. This result demonstrates the power of the dHvA effect to establish the properties of a single band despite the presence of other electronic bands with a larger density of states, even in polycrystalline samples. In common with several other NCSs, we find that the resistive upper critical field exceeds that measured by heat capacity and magnetization by a considerable factor. We suggest that our data exclude mechanisms for such an effect associated with disorder, implying that topologically protected superconducting surface states may be involved

    A disciplinary commons for database teaching

    Get PDF
    This paper discusses the experience of taking part in a disciplinary commons devoted to the teaching of database systems. It will discuss the structure of a disciplinary commons and our experience of the database version

    Consequences of non-random species loss for decomposition dynamics: experimental evidence for additive and non-additive effects

    Full text link
    1.   Although litter decomposition is a fundamental ecological process, most of our understanding comes from studies of single-species decay. Recently, litter-mixing studies have tested whether monoculture data can be applied to mixed-litter systems. These studies have mainly attempted to detect non-additive effects of litter mixing, which address potential consequences of random species loss – the focus is not on which species are lost, but the decline in diversity per se . 2.   Under global change, species loss is likely to be non-random, with some species more vulnerable to extinction than others. Under such scenarios, the effects of individual species (additivity) as well as of species interactions (non-additivity) on decomposition rates are of interest. 3.   To examine potential impacts of non-random species loss on ecosystems, we studied additive and non-additive effects of litter mixing on decomposition. A full-factorial litterbag experiment was conducted using four deciduous leaf species, from which mass loss and nitrogen content were measured. Data were analysed using a statistical approach that first looks for additive identity effects based on the presence or absence of species and then significant species interactions occurring beyond those. It partitions non-additive effects into those caused by richness and/or composition. 4.   This approach addresses questions key to understanding the potential effects of species loss on ecosystem processes. If additive effects dominate, the consequences for decomposition dynamics will be predictable based on our knowledge of individual species, but not statistically predictable if non-additive effects dominate. 5.   We found additive (identity) effects on mass loss and non-additive (composition) effects on litter nitrogen dynamics, suggesting that non-random species loss could significantly affect this system. We were able to identify the species responsible for effects that would otherwise have been considered idiosyncratic or absent when analysed by the methods used in previous work. 6.   Synthesis . We observed both additive and non-additive effects of litter-mixing on decomposition, indicating consequences of non-random species loss. To predict the consequences of global change for ecosystem functioning, studies should examine the effects of both random and non-random species loss, which will help identify the mechanisms that influence the response of ecosystems to environmental change.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73943/1/j.1365-2745.2007.01346.x.pd

    Abnormal neuromuscular transmission in an infantile myasthenic syndrome

    Full text link
    A term infant required intubation for respiratory depression. Examination revealed hypotonia and areflexia with intact extraocular movements. Electrodiagnostic studies demonstrated defective neuromuscular transmission characterized by borderline low motor evoked amplitudes, profound decremental responses at all stimulation rates, and moderate facilitation (50 to 740%) 15 seconds after 5 seconds of 50 Hz stimulation. Repetitive muscle action potential responses were not recorded following stimulation of nerves by single shocks. Sensory evoked responses and needle electromyographic findings were normal, as were acetylcholine receptor antibody levels. Results of muscle histochemical analyses, including acetylcholinesterase stains, were normal. End-plate histometric analyses demonstrated only a slight reduction in mean synaptic vesicle diameter compared with that in an adult control subject. In vitro muscle contractile properties, stimulating the muscle directly, were normal. Anticholinesterase medications were ineffective. Guanidine produced clinical deterioration. The amplitude of motor evoked responses progressively declined, whereas the percentage of decrement and amount of post-tetanic facilitation increased. Although the nature of the transmission defect was not identified, the data are consistent with abnormal acetylcholine resynthesis, mobilization, or storage without abnormality of release or receptors.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50308/1/410160107_ftp.pd

    Relativistic Elasticity

    Get PDF
    Relativistic elasticity on an arbitrary spacetime is formulated as a Lagrangian field theory which is covariant under spacetime diffeomorphisms. This theory is the relativistic version of classical elasticity in the hyperelastic, materially frame-indifferent case and, on Minkowski space, reduces to the latter in the non-relativistic limit . The field equations are cast into a first -- order symmetric hyperbolic system. As a consequence one obtains local--in--time existence and uniqueness theorems under various circumstances.Comment: 23 page

    Incorporation by coordination and release of the iron chelator drug deferiprone from zinc-based metal–organic frameworks

    Get PDF
    A series of new zinc-based metal–organic framework materials has been prepared in which deferiprone is incorporated as a chelating ligand on infinite or tri-zinc secondary building units following deprotonation. Deferiprone is immediately released from the MOFs on treatments with 1 N hydrochloric acid or buffer, but slow release is observed in ethanoic acid

    Ubiquitous CP violation in a top-inspired left-right model

    Full text link
    We explore CP violation in a Left-Right Model that reproduces the quark mass and CKM rotation angle hierarchies in a relatively natural way by fixing the bidoublet Higgs VEVs to be in the ratio m_b:m_t. Our model is quite general and allows for CP to be broken by both the Higgs VEVs and the Yukawa couplings. Despite this generality, CP violation may be parameterized in terms of two basic phases. A very interesting feature of the model is that the mixing angles in the right-handed sector are found to be equal to their left-handed counterparts to a very good approximation. Furthermore, the right-handed analogue of the usual CKM phase delta_L is found to satisfy the relation delta_R \approx delta_L. The parameter space of the model is explored by using an adaptive Monte Carlo algorithm and the allowed regions in parameter space are determined by enforcing experimental constraints from the K and B systems. This method of solution allows us to evaluate the left- and right-handed CKM matrices numerically for various combinations of the two fundamental CP-odd phases in the model. We find that all experimental constraints may be satisfied with right-handed W and Flavour Changing Neutral Higgs masses as low as about 2 TeV and 7 TeV, respectively.Comment: 37 pages, 13 figure

    Cross-species gene expression analysis of species specific differences in the preclinical assessment of pharmaceutical compounds

    Get PDF
    Animals are frequently used as model systems for determination of safety and efficacy in pharmaceutical research and development. However, significant quantitative and qualitative differences exist between humans and the animal models used in research. This is as a result of genetic variation between human and the laboratory animal. Therefore the development of a system that would allow the assessment of all molecular differences between species after drug exposure would have a significant impact on drug evaluation for toxicity and efficacy. Here we describe a cross-species microarray methodology that identifies and selects orthologous probes after cross-species sequence comparison to develop an orthologous cross-species gene expression analysis tool. The assumptions made by the use of this orthologous gene expression strategy for cross-species extrapolation is that; conserved changes in gene expression equate to conserved pharmacodynamic endpoints. This assumption is supported by the fact that evolution and selection have maintained the structure and function of many biochemical pathways over time, resulting in the conservation of many important processes. We demonstrate this cross-species methodology by investigating species specific differences of the peroxisome proliferatoractivator receptor (PPAR) a response in rat and human
    • …
    corecore