455 research outputs found
On boundary conditions for spin diffusion equations with Rashba spin-orbit interaction
We reexamine the boundary conditions of spin diffusion equations for dirty
semiconductor heterostructures with weak linear Rashba spin-orbit interaction.
Doing so, we focus on the influence of tangent derivatives of the particle
density at the boundary on the magnetization. Such derivatives are associated
with a spin accumulation in the presence of a density gradient. We show that
the tangent derivatives enter the boundary conditions and argue that the
spin-Hall effect is absent in such systems because of this fact.Comment: 7 page
Global dust model intercomparison in AeroCom phase I
This study presents the results of a broad intercomparison of a total of 15 global aerosol models within the AeroCom project. Each model is compared to observations related to desert dust aerosols, their direct radiative effect, and their impact on the biogeochemical cycle, i.e., aerosol optical depth (AOD) and dust deposition. Additional comparisons to Angström exponent (AE), coarse mode AOD and dust surface concentrations are included to extend the assessment of model performance and to identify common biases present in models. These data comprise a benchmark dataset that is proposed for model inspection and future dust model development. There are large differences among the global models that simulate the dust cycle and its impact on climate. In general, models simulate the climatology of vertically integrated parameters (AOD and AE) within a factor of two whereas the total deposition and surface concentration are reproduced within a factor of 10. In addition, smaller mean normalized bias and root mean square errors are obtained for the climatology of AOD and AE than for total deposition and surface concentration. Characteristics of the datasets used and their uncertainties may influence these differences. Large uncertainties still exist with respect to the deposition fluxes in the southern oceans. Further measurements and model studies are necessary to assess the general model performance to reproduce dust deposition in ocean regions sensible to iron contributions. Models overestimate the wet deposition in regions dominated by dry deposition. They generally simulate more realistic surface concentration at stations downwind of the main sources than at remote ones. Most models simulate the gradient in AOD and AE between the different dusty regions. However the seasonality and magnitude of both variables is better simulated at African stations than Middle East ones. The models simulate the offshore transport of West Africa throughout the year but they overestimate the AOD and they transport too fine particles. The models also reproduce the dust transport across the Atlantic in the summer in terms of both AOD and AE but not so well in winter-spring nor the southward displacement of the dust cloud that is responsible of the dust transport into South America. Based on the dependency of AOD on aerosol burden and size distribution we use model bias with respect to AOD and AE to infer the bias of the dust emissions in Africa and the Middle East. According to this analysis we suggest that a range of possible emissions for North Africa is 400 to 2200 Tg yr-1 and in the Middle East 26 to 526 Tg yr-1
Evaluation of black carbon estimations in global aerosol models
We evaluate black carbon (BC) model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD) retrievals from AERONET and Ozone Monitoring Instrument (OMI) and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column) AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.7 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50N, the average model is a factor of 8 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC ratio is 0.4 and models underestimate the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model generated a smaller change in model predictions than the range represented by the full set of AeroCom models. Upper tropospheric concentrations of BC mass from the aircraft measurements are suggested to provide a unique new benchmark to test scavenging and vertical dispersion of BC in global models
Temperature-Dependent Polarized Raman Spectra of CaFe2O4
The Raman spectra of CaFe2O4 were measured with several exact scattering
configurations between 20 and 520K and the symmetry of all observed Raman lines
was determined. The Ag and B2g lines were assigned to definite phonon modes by
comparison to the results of lattice dynamical calculations. No anomaly of
phonon parameters was observed near the magnetic ordering temperature TN =
160K.Comment: 4 pages, 1 table, 4 figure
Thermal effects on electron-phonon interaction in silicon nanostructures
Raman spectra from silicon nanostructures, recorded using excitation laser
power density of 1.0 kW/cm^2, is employed here to reveal the dominance of
thermal effects at temperatures higher than the room temperature. Room
temperature Raman spectrum shows only phonon confinement and Fano effects.
Raman spectra recorded at higher temperatures show increase in FWHM and
decrease in asymmetry ratio with respect to its room temperature counterpart.
Experimental Raman scattering data are analyzed successfully using theoretical
Raman line-shape generated by incorporating the temperature dependence of
phonon dispersion relation. Experimental and theoretical temperature dependent
Raman spectra are in good agreement. Although quantum confinement and Fano
effects persists, heating effects start dominating at higher temperatures than
room tempaerature.Comment: 9 Pages, 3 Figures and 1 Tabl
The aerosol-climate model ECHAM5-HAM
The aerosol-climate modelling system ECHAM5-HAM is introduced. It is based on a flexible microphysical approach and, as the number of externally imposed parameters is minimised, allows the application in a wide range of climate regimes. ECHAM5-HAM predicts the evolution of an ensemble of microphysically interacting internally- and externally-mixed aerosol populations as well as their size-distribution and composition. The size-distribution is represented by a superposition of log-normal modes. In the current setup, the major global aerosol compounds sulfate (SU), black carbon (BC), particulate organic matter (POM), sea salt (SS), and mineral dust (DU) are included. The simulated global annual mean aerosol burdens (lifetimes) for the year 2000 are for SU: 0.80 Tg(S) (3.9 days), for BC: 0.11 Tg (5.4 days), for POM: 0.99 Tg (5.4 days), for SS: 10.5 Tg (0.8 days), and for DU: 8.28 Tg (4.6 days). An extensive evaluation with in-situ and remote sensing measurements underscores that the model results are generally in good agreement with observations of the global aerosol system. The simulated global annual mean aerosol optical depth (AOD) is with 0.14 in excellent agreement with an estimate derived from AERONET measurements (0.14) and a composite derived from MODIS-MISR satellite retrievals (0.16). Regionally, the deviations are not negligible. However, the main patterns of AOD attributable to anthropogenic activity are reproduced
Asymmetry to symmetry transition of Fano line-shape: Analytical derivation
An analytical derivation of Fano line-shape asymmetry ratio has been
presented here for a general case. It is shown that Fano line-shape becomes
less asymmetric as \q is increased and finally becomes completely symmetric in
the limiting condition of q equal to infinity. Asymmetry ratios of Fano
line-shapes have been calculated and are found to be in good consonance with
the reported expressions for asymmetry ratio as a function of Fano parameter.
Application of this derivation is also mentioned for explanation of asymmetry
to symmetry transition of Fano line-shape in quantum confined silicon
nanostructures.Comment: 3 figures, Latex files, Theoretica
Organic aerosol and global climate modelling: a review
The present paper reviews existing knowledge with regard to Organic Aerosol (OA) of importance for global climate modelling and defines critical gaps needed to reduce the involved uncertainties. All pieces required for the representation of OA in a global climate model are sketched out with special attention to Secondary Organic Aerosol (SOA): The emission estimates of primary carbonaceous particles and SOA precursor gases are summarized. The up-to-date understanding of the chemical formation and transformation of condensable organic material is outlined. Knowledge on the hygroscopicity of OA and measurements of optical properties of the organic aerosol constituents are summarized. The mechanisms of interactions of OA with clouds and dry and wet removal processes parameterisations in global models are outlined. This information is synthesized to provide a continuous analysis of the flow from the emitted material to the atmosphere up to the point of the climate impact of the produced organic aerosol. The sources of uncertainties at each step of this process are highlighted as areas that require further studies
- …