112 research outputs found

    Complications from Surgeries Related to Ovarian Cancer Screening

    Get PDF
    The aim of this study was to evaluate complications of surgical intervention for participants in the Kentucky Ovarian Cancer Screening Program and compare results to those of the Prostate, Lung, Colorectal and Ovarian Cancer Screening trial. A retrospective database review included 657 patients who underwent surgery for a positive screen in the Kentucky Ovarian Cancer Screening Program from 1988–2014. Data were abstracted from operative reports, discharge summaries, and office notes for 406 patients. Another 142 patients with incomplete records were interviewed by phone. Complete information was available for 548 patients. Complications were graded using the Clavien–Dindo (C–D) Classification of Surgical Complications and considered minor if assigned Grade I (any deviation from normal course, minor medications) or Grade II (other pharmacological treatment, blood transfusion). C–D Grade III complications (those requiring surgical, endoscopic, or radiologic intervention) and C–D Grade IV complications (those which are life threatening) were considered “major”. Statistical analysis was performed using SAS 9.4 software. Complications were documented in 54/548 (10%) subjects. For women with malignancy, 17/90 (19%) had complications compared to 37/458 (8%) with benign pathology (p \u3c 0.003). For non-cancer surgery, obesity was associated with increased complications (p = 0.0028). Fifty patients had minor complications classified as C–D Grade II or less. Three of 4 patients with Grade IV complications had malignancy (p \u3c 0.0004). In the Prostate, Lung, Colorectal and Ovarian Cancer Screening trial, 212 women had surgery for ovarian malignancy, and 95 had at least one complication (45%). Of the 1080 women with non-cancer surgery, 163 had at least one complication (15%). Compared to the Prostate, Lung, Colorectal and Ovarian Cancer Screening trial, the Kentucky Ovarian Cancer Screening Program had significantly fewer complications from both cancer and non-cancer surgery (p \u3c 0.0001 and p = 0.002, respectively). Complications resulting from surgery performed as a result of the Kentucky Ovarian Cancer Screening Program were infrequent and significantly fewer than reported in the Prostate, Lung, Colorectal and Ovarian Cancer Screening trial. Complications were mostly minor (93%) and were more common in cancer versus non-cancer surgery

    Symptoms Relevant to Surveillance for Ovarian Cancer

    Get PDF
    To examine how frequently and confidently healthy women report symptoms during surveillance for ovarian cancer. A symptoms questionnaire was administered to 24,526 women over multiple visits accounting for 70,734 reports. A query of reported confidence was included as a confidence score (CS). Chi square, McNemars test, ANOVA and multivariate analyses were performed. 17,623 women completed the symptoms questionnaire more than one time and \u3e 9500 women completed it more than one four times for \u3e 43,000 serially completed questionnaires. Reporting ovarian cancer symptoms was ~245 higher than ovarian cancer incidence. The positive predictive value (0.073%) for identifying ovarian cancer based on symptoms alone would predict one malignancy for 1368 cases taken to surgery due to reported symptoms. Confidence on the first questionnaire (83.3%) decreased to 74% when more than five questionnaires were completed. Age-related decreases in confidence were significant (p \u3c 0.0001). Women reporting at least one symptom expressed more confidence (41,984/52,379 = 80.2%) than women reporting no symptoms (11,882/18,355 = 64.7%), p \u3c 0.0001. Confidence was unrelated to history of hormone replacement therapy or abnormal ultrasound findings (p = 0.30 and 0.89). The frequency of symptoms relevant to ovarian cancer was much higher than the occurrence of ovarian cancer. Approximately 80.1% of women expressed confidence in what they reported

    Live Well, Eat Well, Be Active With Diabetes Curriculum Improves Type 2 Diabetes Management

    Get PDF
    Type 2 diabetes is a complex disease with several modifiable lifestyle factors. The Extension ‘Live well, Eat well, be Active with Diabetes’ curriculum provides four 90-minute lessons teaching individuals to live well, eat well, and be active with diabetes. Fourteen Extension educators implemented and evaluated the curriculum with 107 participants. Participants reported the program helped them feel better able to take care of their health. We observed significant differences in participants’ retrospective pre and post ‘Live well,’ ‘Eat well’ and ‘be Active’ total scores. Extension has a unique opportunity to educate individuals so they may better manage their diabetes

    Inhibition of the Integrin/FAK Signaling Axis and c-Myc Synergistically Disrupts Ovarian Cancer Malignancy

    Get PDF
    Integrins, a family of heterodimeric receptors for extracellular matrix, are promising therapeutic targets for ovarian cancer, particularly high-grade serous-type (HGSOC), as they drive tumor cell attachment, migration, proliferation and survival by activating focal adhesion kinase (FAK)-dependent signaling. Owing to the potential off-target effects of FAK inhibitors, disruption of the integrin signaling axis remains to be a challenge. Here, we tackled this barrier by screening for inhibitors being functionally cooperative with small-molecule VS-6063, a phase II FAK inhibitor. From this screening, JQ1, a potent inhibitor of Myc oncogenic network, emerged as the most robust collaborator. Treatment with a combination of VS-6063 and JQ1 synergistically caused an arrest of tumor cells at the G2/M phase and a decrease in the XIAP-linked cell survival. Our subsequent mechanistic analyses indicate that this functional cooperation was strongly associated with the concomitant disruption of activation or expression of FAK and c-Myc as well as their downstream signaling through the PI3K/Akt pathway. In line with these observations, we detected a strong co-amplification or upregulation at genomic or protein level for FAK and c-Myc in a large portion of primary tumors in the TCGA or a local HGSOC patient cohort. Taken together, our results suggest that the integrin–FAK signaling axis and c-Myc synergistically drive cell proliferation, survival and oncogenic potential in HGSOC. As such, our study provides key genetic, functional and signaling bases for the small-molecule-based co-targeting of these two distinct oncogenic drivers as a new line of targeted therapy against human ovarian cancer

    Complex Consequences of Herbivory and Interplant Cues in Three Annual Plants

    Get PDF
    Information exchange (or signaling) between plants following herbivore damage has recently been shown to affect plant responses to herbivory in relatively simple natural systems. In a large, manipulative field study using three annual plant species (Achyrachaena mollis, Lupinus nanus, and Sinapis arvensis), we tested whether experimental damage to a neighboring conspecific affected a plant's lifetime fitness and interactions with herbivores. By manipulating relatedness between plants, we assessed whether genetic relatedness of neighboring individuals influenced the outcome of having a damaged neighbor. Additionally, in laboratory feeding assays, we assessed whether damage to a neighboring plant specifically affected palatability to a generalist herbivore and, for S. arvensis, a specialist herbivore. Our study suggested a high level of contingency in the outcomes of plant signaling. For example, in the field, damaging a neighbor resulted in greater herbivory to A. mollis, but only when the damaged neighbor was a close relative. Similarly, in laboratory trials, the palatability of S. arvensis to a generalist herbivore increased after the plant was exposed to a damaged neighbor, while palatability to a specialist herbivore decreased. Across all species, damage to a neighbor resulted in decreased lifetime fitness, but only if neighbors were closely related. These results suggest that the outcomes of plant signaling within multi-species neighborhoods may be far more context-specific than has been previously shown. In particular, our study shows that herbivore interactions and signaling between plants are contingent on the genetic relationship between neighboring plants. Many factors affect the outcomes of plant signaling, and studies that clarify these factors will be necessary in order to assess the role of plant information exchange about herbivory in natural systems

    A Radio Flare in the Long-Lived Afterglow of the Distant Short GRB 210726A: Energy Injection or a Reverse Shock from Shell Collisions?

    Full text link
    We present the discovery of the radio afterglow of the short Îł\gamma-ray burst (GRB) 210726A, localized to a galaxy at a photometric redshift of z∌2.4z\sim 2.4. While radio observations commenced â‰Č1 \lesssim 1~day after the burst, no radio emission was detected until ∌11\sim11~days. The radio afterglow subsequently brightened by a factor of ∌3\sim 3 in the span of a week, followed by a rapid decay (a ``radio flare''). We find that a forward shock afterglow model cannot self-consistently describe the multi-wavelength X-ray and radio data, and underpredicts the flux of the radio flare by a factor of ≈5\approx 5. We find that the addition of substantial energy injection, which increases the isotropic kinetic energy of the burst by a factor of ≈4\approx 4, or a reverse shock from a shell collision are viable solutions to match the broad-band behavior. At z∌2.4z\sim 2.4, GRB\,210726A is among the highest redshift short GRBs discovered to date as well as the most luminous in radio and X-rays. Combining and comparing all previous radio afterglow observations of short GRBs, we find that the majority of published radio searches conclude by â‰Č10 \lesssim 10~days after the burst, potentially missing these late rising, luminous radio afterglows.Comment: 28 pages, 10 figures, submitted to Ap

    Global change effects on plant communities are magnified by time and the number of global change factors imposed

    Get PDF
    Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≄10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity–ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously

    Quantifying sources of variability in infancy research using the infant-directed-speech preference

    Get PDF
    Psychological scientists have become increasingly concerned with issues related to methodology and replicability, and infancy researchers in particular face specific challenges related to replicability: For example, high-powered studies are difficult to conduct, testing conditions vary across labs, and different labs have access to different infant populations. Addressing these concerns, we report on a large-scale, multisite study aimed at (a) assessing the overall replicability of a single theoretically important phenomenon and (b) examining methodological, cultural, and developmental moderators. We focus on infants’ preference for infant-directed speech (IDS) over adult-directed speech (ADS). Stimuli of mothers speaking to their infants and to an adult in North American English were created using seminaturalistic laboratory-based audio recordings. Infants’ relative preference for IDS and ADS was assessed across 67 laboratories in North America, Europe, Australia, and Asia using the three common methods for measuring infants’ discrimination (head-turn preference, central fixation, and eye tracking). The overall meta-analytic effect size (Cohen’s d) was 0.35, 95% confidence interval = [0.29, 0.42], which was reliably above zero but smaller than the meta-analytic mean computed from previous literature (0.67). The IDS preference was significantly stronger in older children, in those children for whom the stimuli matched their native language and dialect, and in data from labs using the head-turn preference procedure. Together, these findings replicate the IDS preference but suggest that its magnitude is modulated by development, native-language experience, and testing procedure. (This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie SkƂodowska-Curie grant agreement No 798658.

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    PragmĂĄticas Ă­ntimas: linguagem, subjetividade e gĂȘnero

    Full text link
    • 

    corecore