2,371 research outputs found

    Experimental study of main rotor tip geometry and tail rotor interactions in hover. Volume 1. Text and figures

    Get PDF
    A model scale hover test was conducted in the Sikorsky Aircraft Model rotor hover Facility to identify and quantify the impact of the tail rotor on the demonstrated advantages of advanced geometry tip configurations. The test was conducted using the Basic Model Test Rig and two scaled main rotor systems, one representing a 1/5.727 scale UH-60A BLACK HAWK and the others a 1/4.71 scale S-76. Eight alternate rotor tip configurations were tested, 3 on the BLACK HAWK rotor and 6 on the S-76 rotor. Four of these tips were then selected for testing in close proximity to an operating tail rotor (operating in both tractor and pusher modes) to determine if the performance advantages that could be obtained from the use of advanced geometry tips in a main rotor only environment would still exist in the more complex flow field involving a tail rotor. The test showed that overall the tail rotor effects on the advanced tip configurations tested are not substantially different from the effects on conventional tips

    Experimental study of main rotor tip geometry and tail rotor interactions in hover. Volume 2: Run log and tabulated data

    Get PDF
    A model scale hover test was conducted in the Sikorsky Aircraft Model Rotor hover Facility to identify and quantify the impact of the tail rotor on the demonstrated advantages of advanced geometry tip configurations. The existence of mutual interference between hovering main rotor and a tail rotor was acknowledged in the test. The test was conducted using the Basic Model Test Rig and two scaled main rotor systems, one representing a 1/5.727 scale UH-60A BLACK HAWK and the others a 1/4.71 scale S-76. Eight alternate rotor tip configurations were tested, 3 on the BLACK HAWK rotor and 6 on the S-76 rotor. Four of these tips were then selected for testing in close proximity to an operating tail rotor (operating in both tractor and pusher modes) to determine if the performance advantages that could be obtained from the use of advanced geometry tips in a main rotor only environment would still exist in the more complex flow field involving a tail rotor. This volume contains the test run log and tabulated data

    Laboratory observations of midwater spawning by Illex illecebrosus

    Get PDF
    Visual observations and video-tape records were made for the first time of mid-water spawning by Illex illecebrosus in the Aquatron Laboratory pool tank. Coupled with data on the density of egg masses, they allow some conclusions to be drawn concerning possible mid-water spawning sites in nature

    Experimental study of main rotor/tail rotor/airframe interactions in hover. Volume 1: Text and figures

    Get PDF
    To assist in identifying and quantifying the relevant parameters associated with the complex topic of main rotor/fuselage/tail rotor interference, a model scale hover test was conducted in the Model Rotor Hover Facility. The test was conducted using the basic model test rig, fuselage skins to represent a UH-60A BLACK HAWK helicopter, 4 sets of rotor blades of varying geometry (i.e., twist, airfoils and solidity) and a model tail rotor that could be relocated to give changes in rotor clearance (axially, laterally, and vertically), can't angle and operating model (pusher or tractor). The description of the models and the tests, data analysis and summary (including plots) are included. The customary system of units gas used for principal measurements and calculations. Expressions in both SI units and customary units are used with the SI units stated first and the customary units afterwords, in parenthesis

    ‘‘There’s so much more to it than what I initially thought’’: Stepping into researchers’ shoes with a class activity in a first year psychology survey course

    Get PDF
    In psychology, it is widely agreed that research methods, although central to the discipline, are particularly challenging to learn and teach, particularly at introductory level. This pilot study explored the potential of embedding a student-conducted research activity in a one-semester undergraduate Introduction to Psychology survey course, with the aims of (a) engaging students with the topic of research methods; (b) developing students’ comprehension and application of research methods concepts; and (c) building students’ ability to link research with theory. The research activity explored shoe ownership, examining gender differences and relationships with age, and linking to theories of gender difference and of consumer identity. The process of carrying out the research and reflecting on it created a contextualized, active learning environment in which students themselves raised many issues that research methods lectures seek to cover. Students also wrote richer assignments than standard first year mid-term essay

    The proteostasis boundary in misfolding diseases of membrane traffic

    Get PDF
    AbstractProtein function is regulated by the proteostasis network (PN) [Balch, W.E., Morimoto, R.I., Dillin, A. and Kelly, J.W. (2008) Adapting proteostasis for disease intervention. Science 319, 916–919], an integrated biological system that generates and protects the protein fold. The composition of the PN is regulated by signaling pathways including the unfolded protein response (UPR), the heat-shock response (HSR), the ubiquitin proteasome system (UPS) and epigenetic programs. Mismanagement of protein folding and function during membrane trafficking through the exocytic and endocytic pathways of eukaryotic cells by the PN is responsible for a wide range of diseases that include, among others, lysosomal storage diseases, myelination diseases, cystic fibrosis, systemic amyloidoses such as light chain myeloma, and neurodegenerative diseases including Alzheimer’s. Toxicity from misfolding can be cell autonomous (affect the producing cell) or cell non-autonomous (affect a non-producing cell) or both, and have either a loss-of-function or gain-of-toxic function phenotype. Herein, we review the role of the PN and its regulatory transcriptional circuitry likely to be operational in managing the protein fold and function during membrane trafficking. We emphasize the enabling principle of a ‘proteostasis boundary (PB)’ [Powers, E.T., Morimoto, R.T., Dillin, A., Kelly, J.W., and Balch, W.E. (2009) Biochemical and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 78, 959–991]. The PB is defined by the combined effects of the kinetics and thermodynamics of folding and the kinetics of misfolding, which are linked to the variable and adjustable PN capacity found different cell types. Differences in the PN account for the versatility of protein folding and function in health, and the cellular and tissue response to mutation and environmental challenges in disease. We discuss how manipulation of the folding energetics or the PB through metabolites and pharmacological intervention provides multiple routes for restoration of biological function in trafficking disease

    Chalk-Ex—fate of CaCO3 particles in the mixed layer : evolution of patch optical properties

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C07020, doi:10.1029/2008JC004902.The fate of particles in the mixed layer is of great relevance to the global carbon cycle as well as to the propagation of light in the sea. We conducted four manipulative field experiments called “Chalk-Ex” in which known quantities of uniform, calcium carbonate particles were injected into the surface mixed layer. Since the production term for these patches was known to high precision, the experimental design allowed us to focus on terms associated with particle loss. The mass of chalk in the patches was evaluated using the well-calibrated light-scattering properties of the chalk plus measurements from a variety of optical measurements and platforms. Patches were surveyed with a temporal resolution of hours over spatial scales of tens of kilometers. Our results demonstrated exponential loss of the chalk particles with time from the patches. There was little evidence for rapid sinking of the chalk. Instead, horizontal eddy diffusion appeared to be the major factor affecting the dispersion of the chalk to concentrations below the limits of detection. There was unequivocal evidence of subduction of the chalk along isopycnals and subsequent formation of thin layers. Shear dispersion is the most likely mechanism to explain these results. Calculations of horizontal eddy diffusivity were consistent with other mixed layer patch experiments. Our results provide insight into the importance of physics in the formation of subsurface particle maxima in the sea, as well as the importance of rapid coccolith production and critical patch size for maintenance of natural coccolithophore blooms in nature.We would like to thank the Office of Naval Research/Optical and Biological Oceanography Program for their support of Chalk-Ex with awards N000140110042 (WMB) and N00014-01-1-0141 (AJP). Additional funding for this work came from ONR (N00014-05-1- 0111) and NASA (NNG04Gl11G, NNX08AC27G, NNG04HZ25C) to W.M.B

    Helicopter tail rotor thrust and main rotor wake coupling in crosswind flight

    Get PDF
    The tail rotor of a helicopter with a single main rotor configuration can experience a significant reduction in thrust when the aircraft operates in crosswind flight. Brown’s vorticity transport model has been used to simulate a main rotor and tail rotor system translating at a sideslip angle that causes the tail rotor to interact with the main rotor tip vortices as they propagate downstream at the lateral extremities of the wake. The tail rotor is shown to exhibit a distinct directionally dependent mode during which tail rotors that are configured so that the blades travel forward at the top of the disk develop less thrust than tail rotors with the reverse sense of rotation. The range of flight speeds over which this mode exists is shown to vary considerably with the vertical location of the tail rotor. At low flight speeds, the directionally dependent mode occurs because the tail rotor is immersed within not only the downwash from the main rotor but also the rotational flow associated with clusters of largely disorganized vorticity within the main rotor wake. At higher flight speeds, however, the tail rotor is immersed within a coherent supervortex that strongly influences the velocity field surrounding the tail rotor

    Coordinated Control of Multiple UAVs : Theory and Flight Experiment

    Full text link
    • …
    corecore