416 research outputs found
Analysis of Petri Net Models through Stochastic Differential Equations
It is well known, mainly because of the work of Kurtz, that density dependent
Markov chains can be approximated by sets of ordinary differential equations
(ODEs) when their indexing parameter grows very large. This approximation
cannot capture the stochastic nature of the process and, consequently, it can
provide an erroneous view of the behavior of the Markov chain if the indexing
parameter is not sufficiently high. Important phenomena that cannot be revealed
include non-negligible variance and bi-modal population distributions. A
less-known approximation proposed by Kurtz applies stochastic differential
equations (SDEs) and provides information about the stochastic nature of the
process. In this paper we apply and extend this diffusion approximation to
study stochastic Petri nets. We identify a class of nets whose underlying
stochastic process is a density dependent Markov chain whose indexing parameter
is a multiplicative constant which identifies the population level expressed by
the initial marking and we provide means to automatically construct the
associated set of SDEs. Since the diffusion approximation of Kurtz considers
the process only up to the time when it first exits an open interval, we extend
the approximation by a machinery that mimics the behavior of the Markov chain
at the boundary and allows thus to apply the approach to a wider set of
problems. The resulting process is of the jump-diffusion type. We illustrate by
examples that the jump-diffusion approximation which extends to bounded domains
can be much more informative than that based on ODEs as it can provide accurate
quantity distributions even when they are multi-modal and even for relatively
small population levels. Moreover, we show that the method is faster than
simulating the original Markov chain
Data compression for the First G-APD Cherenkov Telescope
The First Geiger-mode Avalanche photodiode (G-APD) Cherenkov Telescope (FACT)
has been operating on the Canary island of La Palma since October 2011.
Operations were automated so that the system can be operated remotely. Manual
interaction is required only when the observation schedule is modified due to
weather conditions or in case of unexpected events such as a mechanical
failure. Automatic operations enabled high data taking efficiency, which
resulted in up to two terabytes of FITS files being recorded nightly and
transferred from La Palma to the FACT archive at ISDC in Switzerland. Since
long term storage of hundreds of terabytes of observations data is costly, data
compression is mandatory. This paper discusses the design choices that were
made to increase the compression ratio and speed of writing of the data with
respect to existing compression algorithms.
Following a more detailed motivation, the FACT compression algorithm along
with the associated I/O layer is discussed. Eventually, the performances of the
algorithm is compared to other approaches.Comment: 17 pages, accepted to Astronomy and Computing special issue on
astronomical file format
FACT - Monitoring Blazars at Very High Energies
The First G-APD Cherenkov Telescope (FACT) was built on the Canary Island of
La Palma in October 2011 as a proof of principle for silicon based photosensors
in Cherenkov Astronomy. The scientific goal of the project is to study the
variability of active galatic nuclei (AGN) at TeV energies. Observing a small
sample of TeV blazars whenever possible, an unbiased data sample is collected.
This allows to study the variability of the selected objects on timescales from
hours to years. Results from the first three years of monitoring will be
presented. To provide quick flare alerts to the community and trigger
multi-wavelength observations, a quick look analysis has been installed on-site
providing results publicly online within the same night. In summer 2014,
several flare alerts were issued. Results of the quick look analysis are
summarized.Comment: 2014 Fermi Symposium proceedings - eConf C14102.
VLBI imaging of a flare in the Crab Nebula: More than just a spot
We report on very long baseline interferometry (VLBI) observations of the
radio emission from the inner region of the Crab Nebula, made at 1.6 GHz and 5
GHz after a recent high-energy flare in this object. The 5 GHz data have
provided only upper limits of 0.4 milli-Jansky (mJy) on the flux density of the
pulsar and 0.4 mJy/beam on the brightness of the putative flaring region. The
1.6 GHz data have enabled imaging the inner regions of the nebula on scales of
up to ~40". The emission from the inner "wisps" is detected for the first time
with VLBI observations. A likely radio counterpart (designated "C1") of the
putative flaring region observed with Chandra and HST is detected in the radio
image, with an estimated flux density of \,mJy and a size of
0.2-0.6". Another compact feature ("C2") is also detected in the VLBI image
closer to the pulsar, with an estimated flux density of 0.4 +- 0.2 mJy and a
size smaller than 0{\farcs}2. Combined with the broad-band SED of the flare,
the radio properties of C1 yield a lower limit of ~0.5 mG for the magnetic
field and a total minimum energy of 1.2*10^41 ergs vested in the flare
(corresponding to using about 0.2% of the pulsar spin-down power). The 1.6 GHz
observations provide upper limits for the brightness (0.2 mJy/beam) and total
flux density (0.4 mJy) of the optical Knot 1 located at 0.6" from the pulsar.
The absolute position of the Crab pulsar is determined, and an estimate of the
pulsar proper motion is obtained.Comment: Astronomy & Astrophysics; accepted; 10 pages, 8 figure
Mirror Position Determination for the Alignment of Cherenkov Telescopes
Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with
large apertures to map the faint Cherenkov light emitted in extensive air
showers onto their image sensors. Segmented reflectors fulfill these needs
using mass produced and light weight mirror facets. However, as the overall
image is the sum of the individual mirror facet images, alignment is important.
Here we present a method to determine the mirror facet positions on a segmented
reflector in a very direct way. Our method reconstructs the mirror facet
positions from photographs and a laser distance meter measurement which goes
from the center of the image sensor plane to the center of each mirror facet.
We use our method to both align the mirror facet positions and to feed the
measured positions into our IACT simulation. We demonstrate our implementation
on the 4 m First Geiger-mode Avalanche Cherenkov Telescope (FACT).Comment: 11 figures, small ray tracing performance simulation, and
implementation demonstratio
Investigation of β-carotene–gelatin composite particles with a multiwavelength UV/vis detector for the analytical ultracentrifuge
A multiwavelength UV/vis detector for the analytical ultracentrifuge (MWL-AUC) has been developed recently. In this work, β-carotene–gelatin composite particles are investigated with MWL-AUC. Band centrifugation with a Vinograd cell is used to ensure maximum sample separation. Spectral changes of the system are observed in dependence of the sedimentation coefficient and are attributed to a previously unknown inhomogeneity of the β-carotene chemical composition with both H- and J-aggregates coexisting in a mixture. In addition, our data suggest that pure H- and J-aggregates exist in a particle while their relative concentrations in a mixture determine the color characteristics of the sample. The unique abilities and properties of MWL-AUC include sedimentation coefficient distributions for all possible wavelengths, full UV/vis spectra of each different species in the mixture and 3D movies of the sedimentation process. These properties significantly extend the scope of the analytical ultracentrifuge technique and show that complex biopolymer multicomponent mixtures can be resolved into their individual species
Nanoscale battery cathode materials induce DNA damage in bacteria
The increasing use of nanoscale lithium nickel manganese cobalt oxide (LixNiyMnzCo1−y−zO2, NMC) as a cathode material in lithium-ion batteries poses risk to the environment. Learning toxicity mechanisms on molecular levels is critical to promote proactive risk assessment of these complex nanomaterials and inform their sustainable development. We focused on DNA damage as a toxicity mechanism and profiled in depth chemical and biological changes linked to DNA damage in two environmentally relevant bacteria upon nano-NMC exposure. DNA damage occurred in both bacteria, characterized by double-strand breakage and increased levels of many putative chemical modifications on bacterial DNA bases related to direct oxidative stress and lipid peroxidation, measured by cutting-edge DNA adductomic techniques. Chemical probes indicated elevated intracellular reactive oxygen species and transition metal ions, in agreement with DNA adductomics and gene expression analysis. By integrating multi-dimensional datasets from chemical and biological measurements, we present rich mechanistic insights on nano-NMC-induced DNA damage in bacteria, providing targets for biomarkers in the risk assessment of reactive materials that may be extrapolated to other nano–bio interactions
Performance of a fast fiber based UV/Vis multiwavelength detector for the analytical ultracentrifuge
The optical setup and the performance of a prototype UV/Vis multiwavelength analytical ultracentrifuge (MWL-AUC) is described and compared to the commercially available Optima XL-A from Beckman Coulter. Slight modifications have been made to the optical path of the MWL-AUC. With respect to wavelength accuracy and radial resolution, the new MWL-AUC is found to be comparable to the existing XL-A. Absorbance accuracy is dependent on the light intensity available at the detection wavelength as well as the intrinsic noise of the data. Measurements from single flashes of light are more noisy for the MWL-AUC, potentially due to the absence of flash-to-flash normalization in the current design. However, the possibility of both wavelength and scan averaging can compensate for this and still give much faster scan rates than the XL-A. Some further improvements of the existing design are suggested based on these findings
Service orchestration with priority constraints
Business process management is an operational management approach that focuses on improving business processes. Business processes, i.e., collections of important activities in an organization, are represented in the form of a workflow, an orchestrated and repeatable pattern of activities amenable to automated analysis and control. Priority is an important concept in modeling workflows. We need priority to model cancelable and compensable tasks within transactional business processes. We use the Reo coordination language to model and formally analyze workflows. In this paper, we propose a constraint-based approach to formalize priority in Reo. We introduce special channels to propagate and block priority flows, define their semantics as constraints, and model priority propagation as a constraint satisfaction problem
- …