922 research outputs found

    The depletion in Bose Einstein condensates using Quantum Field Theory in curved space

    Get PDF
    Using methods developed in Quantum Field Theory in curved space we can estimate the effects of the inhomogeneities and of a non vanishing velocity on the depletion of a Bose Einstein condensate within the hydrodynamical approximation.Comment: 4 pages, no figure. Discussion extended and references adde

    Hawking radiation in dispersive theories, the two regimes

    Full text link
    We compute the black hole radiation spectrum in the presence of high-frequency dispersion in a large set of situations. In all cases, the spectrum diverges like the inverse of the Killing frequency. When studying the low-frequency spectrum, we find only two regimes: an adiabatic one where the corrections with respect to the standard temperature are small, and an abrupt one regulated by dispersion, in which the near-horizon metric can be replaced by step functions. The transition from one regime to the other is governed by a single parameter which also governs the net redshift undergone by dispersive modes. These results can be used to characterize the quasiparticles spectrum of recent and future experiments aiming to detect the analogue Hawking radiation. They also apply to theories of quantum gravity which violate Lorentz invariance.Comment: 11 pages, 9 figure

    Hawking radiation of massive modes and undulations

    Full text link
    We compute the analogue Hawking radiation for modes which posses a small wave vector perpendicular to the horizon. For low frequencies, the resulting mass term induces a total reflection. This generates an extra mode mixing that occurs in the supersonic region, which cancels out the infrared divergence of the near horizon spectrum. As a result, the amplitude of the undulation (0-frequency wave with macroscopic amplitude) emitted in white hole flows now saturates at the linear level, unlike what was recently found in the massless case. In addition, we point out that the mass introduces a new type of undulation which is produced in black hole flows, and which is well described in the hydrodynamical regime.Comment: 37 pages, 8 figures, published versio

    Anomaly-Induced Effective Action and Inflation

    Get PDF
    In the early Universe matter can be described as a conformal invariant ultra-relativistic perfect fluid, which does not contribute, on classical level, to the evolution of the isotropic and homogeneous metric. If we suppose that there is some desert in the particle spectrum just below the Planck mass, then the effect of conformal trace anomaly is dominating at the corresponding energies. With some additional constraints on the particle content of the underlying gauge model (which favor extended or supersymmetric versions of the Standard Model rather than the minimal one), one arrives at the stable inflation. We review the model and report about the calculation of the gravitational waves on the background of the anomaly-induced inflation. The result for the perturbation spectrum is close to the one for the conventional inflaton model, and is in agreement with the existing Cobe data (see also [hep-th/0009197]).Comment: 4 pages, LaTeX. Contribution to the Proceedings of the EuroConference on Frontiers in Particle Astrophysics and Cosmology, 30 September - 5 October 2000. San Feliu, Spai

    Two-dimensional black holes in accelerated frames: quantum aspects

    Full text link
    By considering charged black hole solutions of a one parameter family of two dimensional dilaton gravity theories, one finds the existence of quantum mechanically stable gravitational kinks with a simple mass to charge relation. Unlike their Einsteinian counterpart (i.e. extreme Reissner-Nordstr\"om), these have nonvanishing horizon surface gravity.Comment: 18 pages, harvmac, 2 figure

    Evidence for C and Mg variations in the GD-1 stellar stream

    Get PDF
    Dynamically cold stellar streams are the relics left over from globular cluster dissolution. These relics offer a unique insight into a now fully disrupted population of ancient clusters in our Galaxy. Using a combination of Gaia eDR3 proper motions, optical and near-UV colours, we select a sample of likely Red Giant Branch stars from the GD-1 stream for medium-low resolution spectroscopic follow-up. Based on radial velocity and metallicity, we are able to find 14 new members of GD-1, 5 of which are associated with the spur and blob/cocoon off-stream features. We measured C-abundances to probe for abundance variations known to exist in globular clusters. These variations are expected to manifest in a subtle way in globular clusters with such low masses (similar to 10(4) M-circle dot) and metallicities ([Fe/H] similar to -2.1 dex). We find that the C-abundances of the stars in our sample display a small but significant (3 sigma level) spread. Furthermore, we find similar to 3 sigma variation in Mg-abundances among the stars in our sample that have been observed by APOGEE. These abundance patterns match the ones found in Galactic globular clusters of similar metallicity. Our results suggest that GD-1 represents another fully disrupted low-mass globular cluster where light-element abundance spreads have been found

    Bridge over troubled gas: clusters and associations under the SMC and LMC tidal stresses

    Full text link
    We obtained SOAR telescope B and V photometry of 14 star clusters and 2 associations in the Bridge tidal structure connecting the LMC and SMC. These objects are used to study the formation and evolution of star clusters and associations under tidal stresses from the Clouds. Typical star clusters in the Bridge are not richly populated and have in general relatively large diameters (~30-35 pc), being larger than Galactic counterparts of similar age. Ages and other fundamental parameters are determined with field-star decontaminated photometry. A self-consistent approach is used to derive parameters for the most-populated sample cluster NGC 796 and two young CMD templates built with the remaining Bridge clusters. We find that the clusters are not coeval in the Bridge. They range from approximately a few Myr (still related to optical HII regions and WISE and Spitzer dust emission measurements) to about 100-200 Myr. The derived distance moduli for the Bridge objects suggests that the Bridge is a structure connecting the LMC far-side in the East to the foreground of the SMC to the West. Most of the present clusters are part of the tidal dwarf candidate D 1, which is associated with an H I overdensity. We find further evidence that the studied part of the Bridge is evolving into a tidal dwarf galaxy, decoupling from the Bridge.Comment: 15 pages, 15 figures, MNRAS, Accepted 2015 July 2

    Black hole lasers, a mode analysis

    Full text link
    We show that the black hole laser effect discovered by Corley & Jacobson should be described in terms of frequency eigenmodes that are spatially bound. The spectrum contains a discrete and finite set of complex frequency modes which appear in pairs and which encode the laser effect. In addition, it contains real frequency modes that form a continuous set when space is infinite, and which are only elastically scattered, i.e., not subject to any Bogoliubov transformation. The quantization is straightforward, but the calculation of the asymptotic fluxes is rather involved. When the number of complex frequency modes is small, our expressions differ from those given earlier. In particular, when the region between the horizons shrinks, there is a minimal distance under which no complex frequency mode exists, and no radiation is emitted. Finally, we relate this effect to other dynamical instabilities found for rotating black holes and in electric fields, and we give the conditions to get this type of instability.Comment: 19 pages, 3 figures, main changes: new figure and new Sec.6 `conditions for having a laser effect', final version accepted in PR

    The globular cluster NGC 6642: Evidence for a depleted mass function in a very old cluster

    Get PDF
    We present photometry for the globular cluster NGC 6642 using the F606W and F814W filters with the ACS/WFC third generation camera on board of Hubble Space Telescope. The Colour Magnitude Diagram shows sources reaching ~ 6 mags below the turn-off in m_F606W. A theoretical isochrone fitting was performed and evolutionary parameters were obtained, such as the metallicity [Fe/H] = -1.80 +/- 0.2 and age log(Age) = 10.14 +/- 0.05. We confirm that NGC 6642 is located in the Galactic bulge, with a distance to the Sun d_{\odot} = 8.05 +/- 0.66 ~ kpc$ and the reddening E(B-V) = 0.46 +/- 0.02. These values are in general agreement with those of previous authors. About 30 blue stragglers were found within the central 1.6 pc of NGC 6642. They are strongly concentrated to the very central regions. The cluster displays a well-developed horizontal branch, with a much redder morphology than that of typical old halo globular clusters of similar metallicity. Completeness corrected luminosity and mass functions were obtained for different annuli centred on NGC 6642. Their spatial variation indicates the existence of mass segregation and depletion of low mass stars. Most striking is the inverted shape of the mass function itself, with an increase in number as a function of increasing mass. This has been previously observed in other globular clusters and is also the result of N-body simulations of stellar systems which have undergone ~ 90% of their lifetime and which are subjected to strong tidal effects. We also analysed the density profile and concluded that NGC 6642 has a collapsed core, provided completeness effects are correctly accounted for. We thus conclude from independent means that NGC 6642 is a very old, highly-evolved, core-collapsed globular cluster with an atypical HB morphology.Comment: Paper, contains 8 figures, 1 table and 8 page

    Back-reaction effects in acoustic black holes

    Full text link
    Acoustic black holes are very interesting non-gravitational objects which can be described by the geometrical formalism of General Relativity. These models can be useful to experimentally test effects otherwise undetectable, as for example the Hawking radiation. The back-reaction effects on the background quantities induced by the analogue Hawking radiation could be the key to indirectly observe it. We briefly show how this analogy works and derive the backreaction equations for the linearized quantum fluctuations in the background of an acoustic black hole. A first order in hbar solution is given in the near horizon region. It indicates that acoustic black holes, unlike Schwarzschild ones, get cooler as they radiate phonons. They show remarkable analogies with near-extremal Reissner-Nordstrom black holes.Comment: 10 pages, 1 figure; Talk given at the conference ``Constrained Dynamics and Quantum Gravity (QG05)", Cala Gonone (Italy), September 200
    • …
    corecore