144 research outputs found

    The HB40-JUB1 transcriptional regulatory network controls gibberellin homeostasisin Arabidopsis

    Get PDF
    The phytohormones gibberellins (GAs) play fundamental roles in almost every aspect of plant growth and development. Although there is good knowledge about GA biosynthetic and signaling pathways, factors contributing to the mechanisms homeostatically controlling GA levels remain largely unclear. Here, we demonstrate that homeobox transcription factor HB40 of the HD-Zip family in Arabidopsis thaliana regulates GA content at two additive control levels. We show that HB40 expression is induced by GA and in turn reduces the levels of endogenous bioactive GAs by a simultaneous reduction of GA biosynthesis and increased GA deactivation. Hence, HB40 overexpression leads to typical GA-deficiency traits, such as small rosettes, reduced plant height, delayed flowering, and male sterility. In contrast, a loss-of-function hb40 mutation enhances GA-controlled growth. Genome-wide RNA-sequencing combined with molecular-genetic analyses revealed that HB40 directly activates transcription of JUNGBRUNNEN1 (JUB1), a key TF repressing growth by suppressing GA biosynthesis and signaling. HB40 also activates genes encoding GA 2-oxidases (GA2oxs) which are major GA catabolic enzymes. The effect of HB40 is ultimately mediated through induction of nuclear growth-repressing DELLA proteins. Our results thus uncover an important role of the HB40/JUB1/GA2ox/DELLA regulatory network in controlling GA homeostasis during plant growth.Plant science

    A novel seed plants gene regulates oxidative stress tolerance in arabidopsis thaliana

    Get PDF
    Oxidative stress can lead to plant growth retardation, yield loss, and death. The atr7 mutant of Arabidopsis thaliana exhibits pronounced tolerance to oxidative stress. Using positional cloning, confirmed by knockout and RNA interference (RNAi) lines, we identified the atr7 mutation and revealed that ATR7 is a previously uncharacterized gene with orthologs in other seed plants but with no homology to genes in lower plants, fungi or animals. Expression of ATR7-GFP fusion shows that ATR7 is a nuclear-localized protein. RNA-seq analysis reveals that transcript levels of genes encoding abiotic- and oxidative stress-related transcription factors (DREB19, HSFA2, ZAT10), chromatin remodelers (CHR34), and unknown or uncharacterized proteins (AT5G59390, AT1G30170, AT1G21520) are elevated in atr7. This indicates that atr7 is primed for an upcoming oxidative stress via pathways involving genes of unknown functions. Collectively, the data reveal ATR7 as a novel seed plants-specific nuclear regulator of oxidative stress response

    A novel seed plants gene regulates oxidative stress tolerance in arabidopsis thaliana

    Get PDF
    Oxidative stress can lead to plant growth retardation, yield loss, and death. The atr7 mutant of Arabidopsis thaliana exhibits pronounced tolerance to oxidative stress. Using positional cloning, confirmed by knockout and RNA interference (RNAi) lines, we identified the atr7 mutation and revealed that ATR7 is a previously uncharacterized gene with orthologs in other seed plants but with no homology to genes in lower plants, fungi or animals. Expression of ATR7-GFP fusion shows that ATR7 is a nuclear-localized protein. RNA-seq analysis reveals that transcript levels of genes encoding abiotic- and oxidative stress-related transcription factors (DREB19, HSFA2, ZAT10), chromatin remodelers (CHR34), and unknown or uncharacterized proteins (AT5G59390, AT1G30170, AT1G21520) are elevated in atr7. This indicates that atr7 is primed for an upcoming oxidative stress via pathways involving genes of unknown functions. Collectively, the data reveal ATR7 as a novel seed plants-specific nuclear regulator of oxidative stress response

    Drought response in Arabidopsis displays synergistic coordination between stems and leaves

    Get PDF
    The synergy between drought-responsive traits across different organs is crucial in the whole-plant mechanism influencing drought resilience. These organ interactions, however, are poorly understood, limiting our understanding of drought response strategies at the whole-plant level. Therefore, we need more integrative studies, especially on herbaceous species that represent many important food crops but remain underexplored in their drought response. We investigated inflorescence stems and rosette leaves of six Arabidopsis thaliana genotypes with contrasting drought tolerance, and combined anatomical observations with hydraulic measurements and gene expression studies to assess differences in drought response. The soc1ful double mutant was the most drought-tolerant genotype based on its synergistic combination of low stomatal conductance, largest stomatal safety margin, more stable leaf water potential during non-watering, reduced transcript levels of drought stress marker genes, and reduced loss of chlorophyll content in leaves, in combination with stems showing the highest embolism resistance, most pronounced lignification, and thickest intervessel pit membranes. In contrast, the most sensitive Cvi ecotype shows the opposite extreme of the same set of traits. The remaining four genotypes show variations in this drought syndrome. Our results reveal that anatomical, ecophysiological, and molecular adaptations across organs are intertwined, and multiple (differentially combined) strategies can be applied to acquire a certain level of drought tolerance.NWOPlant sciencesNaturali

    NAC transcription factor ORE1 and senescence-induced BIFUNCTIONAL NUCLEASE1 (BFN1) constitute a regulatory cascade in Arabidopsis

    No full text
    Senescence is a highly regulated process that involves the action of a large number of transcription factors. The NAC transcription factor ORE1 (ANAC092) has recently been shown to play a critical role in positively controlling senescence in Arabidopsis thaliana, however, no direct target gene through which it exerts its molecular function has been identified previously. Here, we report that BIFUNCTIONAL NUCLEASE1 (BFN1), a well-known senescence-enhanced gene, is directly regulated by ORE1. We detected elevated expression of BFN1 already 2 hours after induction of ORE1 in estradiol-inducible ORE1 overexpression lines and 6 hours after transfection of Arabidopsis mesophyll cell protoplasts with a 35S:ORE1 construct. ORE1 and BFN1 expression patterns largely overlap, as shown by promoter - reporter gene (GUS) fusions, while BFN1 expression in senescent leaves and the abscission zones of maturing flower organs was virtually absent in ore1 mutant background. In vitro binding site assays revealed a bipartite ORE1 binding site, similar to the one of ORS1, a paralog of ORE1. A bipartite ORE1 binding site was identified in the BFN1 promoter; mutating the cis element within the context of the full-length BFN1 promoter drastically reduced ORE1-mediated transactivation capacity in transiently transfected Arabidopsis mesophyll cell protoplasts. Furthermore, chromatin-immunoprecipitation (ChIP) demonstrates in vivo binding of ORE1 to the BFN1 promoter. We also demonstrate binding of ORE1 in vivo to the promoters of two other senescence-associated genes, i.e. SAG29/SWEET15 and SINA1, supporting the central role of ORE1 during senescence

    Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development.

    Get PDF
    BACKGROUND: Development of eukaryotic organisms is controlled by transcription factors that trigger specific and global changes in gene expression programs. In plants, MADS-domain transcription factors act as master regulators of developmental switches and organ specification. However, the mechanisms by which these factors dynamically regulate the expression of their target genes at different developmental stages are still poorly understood. RESULTS: We characterized the relationship of chromatin accessibility, gene expression, and DNA binding of two MADS-domain proteins at different stages of Arabidopsis flower development. Dynamic changes in APETALA1 and SEPALLATA3 DNA binding correlated with changes in gene expression, and many of the target genes could be associated with the developmental stage in which they are transcriptionally controlled. We also observe dynamic changes in chromatin accessibility during flower development. Remarkably, DNA binding of APETALA1 and SEPALLATA3 is largely independent of the accessibility status of their binding regions and it can precede increases in DNA accessibility. These results suggest that APETALA1 and SEPALLATA3 may modulate chromatin accessibility, thereby facilitating access of other transcriptional regulators to their target genes. CONCLUSIONS: Our findings indicate that different homeotic factors regulate partly overlapping, yet also distinctive sets of target genes in a partly stage-specific fashion. By combining the information from DNA-binding and gene expression data, we are able to propose models of stage-specific regulatory interactions, thereby addressing dynamics of regulatory networks throughout flower development. Furthermore, MADS-domain TFs may regulate gene expression by alternative strategies, one of which is modulation of chromatin accessibility

    JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis

    No full text
    The transition from juvenility through maturation to senescence is a complex process that involves the regulation of longevity. Here, we identify JUNGBRUNNEN1 (JUB1), a hydrogen peroxide (H(2)O(2))-induced NAC transcription factor, as a central longevity regulator in Arabidopsis thaliana. JUB1 overexpression strongly delays senescence, dampens intracellular H(2)O(2) levels, and enhances tolerance to various abiotic stresses, whereas in jub1-1 knockdown plants, precocious senescence and lowered abiotic stress tolerance are observed. A JUB1 binding site containing a RRYGCCGT core sequence is present in the promoter of DREB2A, which plays an important role in abiotic stress responses. JUB1 transactivates DREB2A expression in mesophyll cell protoplasts and transgenic plants and binds directly to the DREB2A promoter. Transcriptome profiling of JUB1 overexpressors revealed elevated expression of several reactive oxygen species-responsive genes, including heat shock protein and glutathione S-transferase genes, whose expression is further induced by H(2)O(2) treatment. Metabolite profiling identified elevated Pro and trehalose levels in JUB1 overexpressors, in accordance with their enhanced abiotic stress tolerance. We suggest that JUB1 constitutes a central regulator of a finely tuned control system that modulates cellular H(2)O(2) level and primes the plants for upcoming stress through a gene regulatory network that involves DREB2A

    Characterization of barley (Hordeum vulgare L.) NAC transcription factors suggests conserved functions compared to both monocots and dicots

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The NAC transcription factor family is involved in the regulation of traits in both monocots and dicots of high agronomic importance. Understanding the precise functions of the NAC genes can be of utmost importance for the improvement of cereal crop plants through plant breeding. For the cereal crop plant barley (<it>Hordeum vulgare </it>L.) only a few <it>NAC </it>genes have so far been investigated.</p> <p>Results</p> <p>Through searches in publicly available barley sequence databases we have obtained a list of 48 barley <it>NAC </it>genes (<it>HvNACs</it>) with 43 of them representing full-length coding sequences. Phylogenetic comparisons to Brachypodium, rice, and Arabidopsis NAC proteins indicate that the barley NAC family includes members from all of the eight NAC subfamilies, although by comparison to these species a number of <it>HvNACs </it>still remains to be identified. Using qRT-PCR we investigated the expression profiles of 46 <it>HvNACs </it>across eight barley tissues (young flag leaf, senescing flag leaf, young ear, old ear, milk grain, late dough grain, roots, and developing stem) and two hormone treatments (abscisic acid and methyl jasmonate).</p> <p>Conclusions</p> <p>Comparisons of expression profiles of selected barley <it>NAC </it>genes with the published functions of closely related <it>NAC </it>genes from other plant species, including both monocots and dicots, suggest conserved functions in the areas of secondary cell wall biosynthesis, leaf senescence, root development, seed development, and hormone regulated stress responses.</p

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF
    corecore