35 research outputs found
Mapping sediment–landform assemblages to constrain lacustrine sedimentation in a glacier-fed lake catchment in northwest Spitsbergen
Changes in the deposition of fine-grained rock-flour in glacier-fed lakes reflect glacier variability. This meltwater-driven signal is, however, often overprinted by other processes. To constrain the signature of lacustrine sedimentation, we mapped the catchment of glacier-fed Lake Hajeren in northwest Spitsbergen, identifying sediment sources and linking them to surface processes. To this end, we employed a combined approach of aerial image interpretation and field mapping. Our map comprises sediment–landform assemblages commonly found in pro-, peri- and paraglacial landsystems on Spitsbergen, including weathered moraines outboard Little Ice Age limits. Based on the presented map, we argue that mass-wasting does not directly impact lake sedimentation. Also, due to the scarcity of fines in historical glacial deposits, we suggest that modified glacigenic sediments only briefly affect a recorded glacier signal, following retreat. These findings highlight the value of geomorphological maps as tools to constrain catchment processes, improving the interpretation of lake sediment records.publishedVersio
Sedimentary DNA and Molecular Evidence for Early Human Occupation of the Faroe Islands
The Faroe Islands, a North Atlantic archipelago between Norway and Iceland, were settled by Viking explorers in the mid-9th century CE. However, several indirect lines of evidence suggest earlier occupation of the Faroes by people from the British Isles. Here, we present sedimentary ancient DNA and molecular fecal biomarker evidence from a lake sediment core proximal to a prominent archaeological site in the Faroe Islands to establish the earliest date for the arrival of people in the watershed. Our results reveal an increase in fecal biomarker concentrations and the first appearance of sheep DNA at 500 CE (95% confidence interval 370-610 CE), pre-dating Norse settlements by 300 years. Sedimentary plant DNA indicates an increase in grasses and the disappearance of woody plants, likely due to livestock grazing. This provides unequivocal evidence for human arrival and livestock disturbance in the Faroe Islands centuries before Viking settlement in the 9th century
Recommended from our members
Sedimentary DNA and molecular evidence for early human occupation of the Faroe Islands
The Faroe Islands, a North Atlantic archipelago between Norway and Iceland, were settled by Viking explorers in the mid-9th century CE. However, several indirect lines of evidence suggest earlier occupation of the Faroes by people from the British Isles. Here, we present sedimentary ancient DNA and molecular fecal biomarker evidence from a lake sediment core proximal to a prominent archaeological site in the Faroe Islands to establish the earliest date for the arrival of people in the watershed. Our results reveal an increase in fecal biomarker concentrations and the first appearance of sheep DNA at 500 CE (95% confidence interval 370-610 CE), pre-dating Norse settlements by 300 years. Sedimentary plant DNA indicates an increase in grasses and the disappearance of woody plants, likely due to livestock grazing. This provides unequivocal evidence for human arrival and livestock disturbance in the Faroe Islands centuries before Viking settlement in the 9th century
Holocene glacier activity reconstructed from proglacial lake Gjøavatnet on Amsterdamøya, NW Svalbard
Well-dated and highly resolved paleoclimate records from high latitudes allow for a better understanding of past climate change. Lake sediments are excellent archives of environmental change, and can record processes occurring within the catchment, such as the growth or demise of an upstream glacier. Here we present a Holocene-length, multi-proxy lake sediment record from proglacial lake Gjøavatnet on the island of Amsterdamøya, northwest Svalbard. Today, Gjøavatnet receives meltwater from the Annabreen glacier and contains a record of changes in glacier activity linked to regional climate conditions. We measured changes in organic matter content, dry bulk density, bulk carbon isotopes, elemental concentrations via Itrax core-scanning, and diatom community composition to reconstruct variability in glacier extent back through time. Our reconstruction indicates that glacially derived sedimentation in the lake decreased markedly at ∼11.1 cal kyr BP, although a glacier likely persisted in the catchment until ∼8.4 cal kyr BP. During the mid-Holocene (∼8.4–1.0 cal kyr BP) there was significantly limited glacial influence in the catchment and enhanced deposition of organic-rich sediment in the lake. The deposition of organic rich sediments during this time was interrupted by at least three multi-centennial intervals of reduced organic matter accumulation (∼5.9–5.0, 2.7–2.0, and 1.7–1.5 cal kyr BP). Considering our chronological information and a sedimentological comparison with intervals of enhanced glacier input, we interpret these intervals not as glacial advances, but rather as cold/dry episodes that inhibited organic matter production in the lake and surrounding catchment. At ∼1.0 cal kyr BP, input of glacially derived sediment to Gjøavatnet abruptly increased, representing the rapid expansion of the Annabreen glacier
Deep-water circulation changes lead North Atlantic climate during deglaciation.
Constraining the response time of the climate system to changes in North Atlantic Deep Water (NADW) formation is fundamental to improving climate and Atlantic Meridional Overturning Circulation predictability. Here we report a new synchronization of terrestrial, marine, and ice-core records, which allows the first quantitative determination of the response time of North Atlantic climate to changes in high-latitude NADW formation rate during the last deglaciation. Using a continuous record of deep water ventilation from the Nordic Seas, we identify a ∼400-year lead of changes in high-latitude NADW formation ahead of abrupt climate changes recorded in Greenland ice cores at the onset and end of the Younger Dryas stadial, which likely occurred in response to gradual changes in temperature- and wind-driven freshwater transport. We suggest that variations in Nordic Seas deep-water circulation are precursors to abrupt climate changes and that future model studies should address this phasing
Deep-water circulation changes lead North Atlantic climate during deglaciation
Constraining the response time of the climate system to changes in North Atlantic Deep Water (NADW) formation is fundamental to improving climate and Atlantic Meridional Overturning Circulation predictability. Here we report a new synchronization of terrestrial, marine, and ice-core records, which allows the first quantitative determination of the response time of North Atlantic climate to changes in high-latitude NADW formation rate during the last deglaciation. Using a continuous record of deep water ventilation from the Nordic Seas, we identify a ∼400-year lead of changes in high-latitude NADW formation ahead of abrupt climate changes recorded in Greenland ice cores at the onset and end of the Younger Dryas stadial, which likely occurred in response to gradual changes in temperature- and wind-driven freshwater transport. We suggest that variations in Nordic Seas deep-water circulation are precursors to abrupt climate changes and that future model studies should address this phasing
Recommended from our members
Lacustrine Records of Holocene Climate and Environmental Change from the Lofoten Islands, Norway
Lakes sediments from the Lofoten Islands, Norway, can be used to generate well resolved records of past climate and environmental change. This dissertation presents three lacustrine paleoenvironmental reconstructions that show evidence for Holocene climate changes associated with North Atlantic climate dynamics and relative sea-level variations driven by glacio-isostatic adjustment. This study also uses distal tephra deposits (cryptotephra) from Icelandic volcanic eruptions to improve the chronologies of these reconstructions and explores new approaches to crypto-tephrochronology. Past and present conditions at Vikjordvatnet, Fiskebølvatnet, and Heimerdalsvatnet were studied during four field seasons conducted from 2007-2010. Initially, each lake was characterized by measuring water column chemistry, logging annual temperature fluctuations, and conducting bathymetric and seismic surveys. Sediment cores were then collected and analyzed using multiple techniques, including: sediment density, magnetic susceptibility, loss-on-ignition, total carbon and nitrogen, δ13C and δ15N of organic matter, and elemental compositions acquired by scanning X-ray fluorescence. Chronologies were established using radiocarbon dating and tephrochronology. A 13.8 cal ka BP record from Vikjordvatnet provides evidence for glacial activity during the Younger Dryas cold interval and exhibits trends in Ti, Fe, and organic content during the Holocene that correlate with regional millennial-scale climate trends and provide evidence for more rapid events. A 9.7 cal ka BP record from Fiskebølvatnet shows a strong signal of sediment inwashing likely driven by local geomorphic conditions, although there is evidence that increased inwashing at the onset of the Neoglacial could have been associated with increased precipitation. Heimerdalsvatnet provides a record of relative sea-level change. A 7.8 cal ka BP sedimentary record reflects changes in salinity and water column conditions as the lake was isolated and defines sea-level regression following the Tapes transgression. Cryptotephra horizons were identified in sediments of Heimerdalsvatnet, Vikjordvatnet, and Sverigedalsvatn. They were also found in a Viking-age boathouse excavated along the shore of Inner Borgpollen. These include the GA4-85, BIP-24a, SILK-N2, Askja, 860 Layer B, Hekla 1158, Hekla 1104, Vedde Ash, and Saksunarvatn tephra. This research project also explored the use of scanning XRF to locate cryptotephra in lacustrine sediments and presents experimental results of XRF scans of tephra-spiked synthetic sediment cores
Mapping sediment–landform assemblages to constrain lacustrine sedimentation in a glacier-fed lake catchment in northwest Spitsbergen
Changes in the deposition of fine-grained rock-flour in glacier-fed lakes reflect glacier variability. This meltwater-driven signal is, however, often overprinted by other processes. To constrain the signature of lacustrine sedimentation, we mapped the catchment of glacier-fed Lake Hajeren in northwest Spitsbergen, identifying sediment sources and linking them to surface processes. To this end, we employed a combined approach of aerial image interpretation and field mapping. Our map comprises sediment–landform assemblages commonly found in pro-, peri- and paraglacial landsystems on Spitsbergen, including weathered moraines outboard Little Ice Age limits. Based on the presented map, we argue that mass-wasting does not directly impact lake sedimentation. Also, due to the scarcity of fines in historical glacial deposits, we suggest that modified glacigenic sediments only briefly affect a recorded glacier signal, following retreat. These findings highlight the value of geomorphological maps as tools to constrain catchment processes, improving the interpretation of lake sediment records
Human–environment dynamics during the Iron Age in the Lofoten Islands, Norway
Integrated archaeological and paleoenvironmental investigations provide long-term perspectives
on human–environment interactions. In the North Atlantic region, early human settlements were
established in marginal agricultural environments and were susceptible to various environmental
stressors. The Lofoten Islands have had an important role in the history of this region,
particularly during the Iron Age, when Lofoten developed from pioneering agricultural
settlements to a prominent node of power and trade under Viking chieftains. Iron Age
developments in Lofoten were concurrent with significant natural environmental changes,
including variations in climate and sea level. However, there has not been a comprehensive
investigation of their influence on early settlements. The purpose of the study is to review Iron
Age cultural developments in Lofoten using published archaeological data and
paleoenvironmental records of past climate and sea-level change, and to present specific
examples of the intersection of early human development and natural environmental changes.
The findings show that climate changes probably influenced agricultural phases and that relative
sea-level variations had important impacts on maritime developments. In conclusion, the
findings demonstrate that human–environment interactions were significant factors in Lofoten’s
history and the authors suggest specific areas for future research
Recommended from our members
Evaluating Holocene climate change in northern Norway using sediment records from two contrasting lake systems.
We analyzed Holocene sedimentary records from two lakes in the Lofoten Islands, northern Norway to evaluate environmental changes during the Holocene related to northern North Atlantic climate dynamics. The lakes are located in different geomorphological settings, and thus provide a contrast in their response to regional climate change. Environmental changes at both lakes were interpreted based on magnetic susceptibility, organic-matter flux, C/N, d13 Corg , Ti concentrations, and mass accumulation rates. Chronologies were established using 16 AMS radiocarbon dates, and average deposition rates in both environments are higher than 0.2 mm/year throughout the Holocene. At Vikjordvatnet, sedimentary geochemical properties define three distinct phases of sedimentation related to changes in aquatic productivity and gradual landscape development. Following deglaciation, during the early Holocene (11.6–7.2 ka), aquatic productivity increased and the landscape stabilized as regional temperatures increased in response to higher summer insolation and increasing inflow of warm Atlantic water into the Norwegian Sea. Centennial-scale intervals of decreased organic-matter flux, from 10.9 to 10.2 ka and 9.2 to 8.0 ka, record episodes of instability during the early Holocene. These may represent regional cooling events related to freshwater forcing and a slowdown of the northward transport of warm water into the North Atlantic. During the mid-Holocene (7.2–4.8 ka) organic-matter properties show less variability and the timing of this phase corresponds with the regional Holocene thermal maximum. The late Holocene sediments (4.8 ka–present) record a transition to colder climate conditions. The record from Fiskebølvatnet captures periodic changes in clastic input related to runoff and exhibits highfrequency variations over the last 9.5 ka. The most significant change in sedimentation was during the late Holocene (4.3 ka–present) when the frequency and magnitude of runoff events show an abrupt transition to wetter conditions. The timing of this shift corresponds to other regional reconstructions that indicate wetter and colder conditions during the late Holocene