75 research outputs found

    Cannons to Spark Thermal-Fluid Canons

    Get PDF
    Hands-on projects are launch pads for sparking student interest. Specifically, design-build-test (DBT) projects can be effective tools for boosting students’ confidence in their ability to apply theoretical knowledge to practical engineering. Recognizing the need for relating the theoretical aspects of thermodynamics to its application, an air cannon design-build-test project was envisioned and implemented. Air cannons can be simple and inexpensive to construct, while offering a robust platform to explore thermodynamics, heat transfer, and fluid mechanics concepts. At the same time, the ability to launch projectiles from the cannons carries an obvious appeal for many students. An air cannon design project was integrated towards the beginning of a year-long thermal-fluid sciences course series. The primary aim of the project was for student teams to study how air cannons function and subsequently design a prototype that fits “customer” specifications. Each team constructed their cannons using PVC piping to launch acetal plastic projectiles. Students were additionally required to design a functional release valve mechanism to trigger the projectile launch. To aid in evaluation of their designs, students were introduced to a numerical-analytical modeling approach to explain air cannon behavior using principles of linear momentum conservation and ideal gas thermodynamics theory. Among other metrics, the performance of each student team was assessed based on (1) the ability of the custom trigger mechanism to fire the cannon over a range of initial reservoir pressures, (2) a thoughtful comparison among experimentally-measured and model-predicted muzzle velocities, and (3) documentation of the results of cannon design, realization, and operation. This paper discusses the implementation and relevant outcomes of the project. Based on student feedback, the project was well-received and anchored the often abstract thermal-fluid sciences concepts taught. The project also highlighted the challenges of applying theoretical equations to real-world problems and the vital need for experiments to improve accuracy of theoretical models. Exposure to this iterative approach to design emphasizes the practical aspects of engineering challenges. Overall, the project served its primary purpose of engaging students with thermodynamics concepts. With minor modifications in implementation, the project can appeal to students with a broader academic focus and experience

    Radial Evolution of Thermal and Suprathermal Electron Populations in the Slow Solar Wind from 0.13 to 0.5 au: Parker Solar Probe Observations

    Get PDF
    We develop and apply a bespoke fitting routine to a large volume of solar wind electron distribution data measured by Parker Solar Probe (PSP) over its first five orbits, covering radial distances from 0.13 to 0.5 au. We characterise the radial evolution of the electron core, halo and strahl populations in the slow solar wind during these orbits. The fractional densities of these three electron populations provide evidence for the growth of the combined suprathermal halo and strahl populations from 0.13 to 0.17 au. Moreover, the growth in the halo population is not matched by a decrease of the strahl population at these distances, as has been reported for previous observations at distances greater than 0.3 au. We also find that the halo is negligible at small heliocentric distances. The fractional strahl density remains relatively constant ~1% below 0.2 au, suggesting that the rise in the relative halo density is not solely due to the transfer of strahl electrons into the halo

    Associations of objectively measured moderate-to-vigorous-intensity physical activity and sedentary time with all-cause mortality in a population of adults at high risk of type 2 diabetes mellitus

    Get PDF
    The relationships of physical activity and sedentary time with all-cause mortality in those at high risk of type 2 diabetes mellitus (T2DM) are unexplored. To address this gap in knowledge,we examined the associations of objectively measured moderate-to-vigorous-intensity physical activity (MVPA) and sedentary time with all-cause mortality in a population of adults at high risk of T2DM. In 2010–2011, 712 adults (Leicestershire, U.K.), identified as being at high risk of T2DM, consented to be followed up for mortality.MVPA and sedentary time were assessed by accelerometer; those with valid data (≄10 hours of wear-time/day with ≄4 days of data) were included. Cox proportional hazards regression models, adjusted for potential confounders, were used to investigate the independent associations of MVPA and sedentary time with all-cause mortality. 683 participants (250 females (36.6%)) were included and during a mean follow-up period of 5.7 years, 26 deaths were registered. Every 10% increase in MVPA time/day was associated with a 5% lower risk of all-cause mortality [Hazard Ratio (HR): 0.95 (95% Confidence Interval (95% CI): 0.91, 0.98); p=0.004]; indicating that for the average adult in this cohort undertaking approximately 27.5 minutes of MVPA/day, this benefit would be associated with only 2.75 additional minutes of MVPA/day. Conversely, sedentary time showed no association with all-cause mortality [HR (every 10-minute increase in sedentary time/day): 0.99 (95% CI: 0.95, 1.03); p=0.589]. These data support the importance of MVPA in adults at high risk of T2DM. The association between sedentary time and mortality in this population needs further investigation

    The Kinetic Expansion of Solar-Wind Electrons: Transport Theory and Predictions for the very Inner Heliosphere

    Get PDF
    We propose a transport theory for the kinetic evolution of solar-wind electrons in the heliosphere. We derive a gyro-averaged kinetic transport equation that accounts for the spherical expansion of the solar wind and the geometry of the Parker-spiral magnetic field. To solve our three-dimensional kinetic equation, we develop a mathematical approach that combines the Crank--Nicolson scheme in velocity space and a finite-difference Euler scheme in configuration space. We initialize our model with isotropic electron distribution functions and calculate the kinetic expansion at heliocentric distances from 5 to 20 solar radii. In our kinetic model, the electrons evolve mainly through the combination of the ballistic particle streaming, the magnetic mirror force, and the electric field. By applying fits to our numerical results, we quantify the parameters of the electron strahl and core part of the electron velocity distributions. The strahl fit parameters show that the density of the electron strahl is around 7% of the total electron density at a distance of 20 solar radii, the strahl bulk velocity and strahl temperature parallel to the background magnetic field stay approximately constant beyond a distance of 15 solar radii, and ÎČ∄s\beta_{\parallel s} (i.e., the ratio between strahl parallel thermal pressure to the magnetic pressure) is approximately constant with heliocentric distance at a value of about 0.02. We compare our results with data measured by Parker Solar Probe. Furthermore, we provide theoretical evidence that the electron strahl is not scattered by the oblique fast-magnetosonic/whistler instability in the near-Sun environment

    Associations of objectively measured moderate-to-vigorous-intensity physical activity and sedentary time with all-cause mortality in a population of adults at high risk of type 2 diabetes mellitus

    Get PDF
    a b s t r a c t a r t i c l e i n f o The relationships of physical activity and sedentary time with all-cause mortality in those at high risk of type 2 diabetes mellitus (T2DM) are unexplored. To address this gap in knowledge, we examined the associations of objectively measured moderate-to-vigorous-intensity physical activity (MVPA) and sedentary time with all-cause mortality in a population of adults at high risk of T2DM. In 2010-2011, 712 adults (Leicestershire, U.K.), identified as being at high risk of T2DM, consented to be followed up for mortality. MVPA and sedentary time were assessed by accelerometer; those with valid data (≄10 hours of wear-time/day with ≄4 days of data) were included. Cox proportional hazards regression models, adjusted for potential confounders, were used to investigate the independent associations of MVPA and sedentary time with all-cause mortality. 683 participants (250 females (36.6%)) were included and during a mean follow-up period of 5.7 years, 26 deaths were registered. Every 10% increase in MVPA time/day was associated with a 5% lower risk of all-cause mortality [Hazard Ratio (HR): 0.95 (95% Confidence Interval (95% CI): 0.91, 0.98); p = 0.004]; indicating that for the average adult in this cohort undertaking approximately 27.5 minutes of MVPA/day, this benefit would be associated with only 2.75 additional minutes of MVPA/day. Conversely, sedentary time showed no association with all-cause mortality [HR (every 10-minute increase in sedentary time/day): 0.99 (95% CI: 0.95, 1.03); p = 0.589]. These data support the importance of MVPA in adults at high risk of T2DM. The association between sedentary time and mortality in this population needs further investigation

    Radial Evolution of Thermal and Suprathermal Electron Populations in the Slow Solar Wind from 0.13 to 0.5 au: Parker Solar Probe Observations

    Get PDF
    We develop and apply a bespoke fitting routine to a large volume of solar wind electron distribution data measured by Parker Solar Probe over its first five orbits, covering radial distances from 0.13 to 0.5 au. We characterize the radial evolution of the electron core, halo, and strahl populations in the slow solar wind during these orbits. The fractional densities of these three electron populations provide evidence for the growth of the combined suprathermal halo and strahl populations from 0.13 to 0.17 au. Moreover, the growth in the halo population is not matched by a decrease in the strahl population at these distances, as has been reported for previous observations at distances greater than 0.3 au. We also find that the halo is negligible at small heliocentric distances. The fractional strahl density remains relatively constant at ∌1% below 0.2 au, suggesting that the rise in the relative halo density is not solely due to the transfer of strahl electrons into the halo

    Effect of novel technology-enabled multidimensional physical activity feedback in primary care patients at risk of chronic disease – the MIPACT study: A randomised controlled trial

    Get PDF
    © 2020 The Author(s). Background: Technological progress has enabled the provision of personalised feedback across multiple dimensions of physical activity that are important for health. Whether this multidimensional approach supports physical activity behaviour change has not yet been examined. Our objective was to examine the effectiveness of a novel digital system and app that provided multidimensional physical activity feedback combined with health trainer support in primary care patients identified as at risk of chronic disease. Methods: MIPACT was a parallel-group, randomised controlled trial that recruited patients at medium (≄10 and minimum clinically important difference, MCID). However, there was profound physical activity multidimensionality, and only a small proportion (5%) of patients had consistently low physical activity across all dimensions. Conclusion: In patients at risk of cardiovascular disease and/or type II diabetes, MIPACT did not increase mean physical activity. Using a sophisticated multidimensional digital approach revealed enormous heterogeneity in baseline physical activity in primary care patients, and practitioners may need to screen for low physical activity across dimensions rather than rely on disease-risk algorithms that are heavily influenced by age. Trial registration: This trial is registered with the ISRCTN registry (ISRCTN18008011; registration date 31 July 2013)

    Loss of the BMP Antagonist, SMOC-1, Causes Ophthalmo-Acromelic (Waardenburg Anophthalmia) Syndrome in Humans and Mice

    Get PDF
    Ophthalmo-acromelic syndrome (OAS), also known as Waardenburg Anophthalmia syndrome, is defined by the combination of eye malformations, most commonly bilateral anophthalmia, with post-axial oligosyndactyly. Homozygosity mapping and subsequent targeted mutation analysis of a locus on 14q24.2 identified homozygous mutations in SMOC1 (SPARC-related modular calcium binding 1) in eight unrelated families. Four of these mutations are nonsense, two frame-shift, and two missense. The missense mutations are both in the second Thyroglobulin Type-1 (Tg1) domain of the protein. The orthologous gene in the mouse, Smoc1, shows site- and stage-specific expression during eye, limb, craniofacial, and somite development. We also report a targeted pre-conditional gene-trap mutation of Smoc1 (Smoc1tm1a) that reduces mRNA to ∌10% of wild-type levels. This gene-trap results in highly penetrant hindlimb post-axial oligosyndactyly in homozygous mutant animals (Smoc1tm1a/tm1a). Eye malformations, most commonly coloboma, and cleft palate occur in a significant proportion of Smoc1tm1a/tm1a embryos and pups. Thus partial loss of Smoc-1 results in a convincing phenocopy of the human disease. SMOC-1 is one of the two mammalian paralogs of Drosophila Pentagone, an inhibitor of decapentaplegic. The orthologous gene in Xenopus laevis, Smoc-1, also functions as a Bone Morphogenic Protein (BMP) antagonist in early embryogenesis. Loss of BMP antagonism during mammalian development provides a plausible explanation for both the limb and eye phenotype in humans and mice

    Pleiotropic Effects of Sox2 during the Development of the Zebrafish Epithalamus

    Get PDF
    The zebrafish epithalamus is part of the diencephalon and encompasses three major components: the pineal, the parapineal and the habenular nuclei. Using sox2 knockdown, we show here that this key transcriptional regulator has pleiotropic effects during the development of these structures. Sox2 negatively regulates pineal neurogenesis. Also, Sox2 is identified as the unknown factor responsible for pineal photoreceptor prepatterning and performs this function independently of the BMP signaling. The correct levels of sox2 are critical for the functionally important asymmetrical positioning of the parapineal organ and for the migration of parapineal cells as a coherent structure. Deviations from this strict control result in defects associated with abnormal habenular laterality, which we have documented and quantified in sox2 morphants
    • 

    corecore