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Abstract

We develop and apply a bespoke fitting routine to a large volume of solar wind electron distribution data measured
by Parker Solar Probe over its first five orbits, covering radial distances from 0.13 to 0.5 au. We characterize the
radial evolution of the electron core, halo, and strahl populations in the slow solar wind during these orbits. The
fractional densities of these three electron populations provide evidence for the growth of the combined
suprathermal halo and strahl populations from 0.13 to 0.17 au. Moreover, the growth in the halo population is not
matched by a decrease in the strahl population at these distances, as has been reported for previous observations at
distances greater than 0.3 au. We also find that the halo is negligible at small heliocentric distances. The fractional
strahl density remains relatively constant at ∼1% below 0.2 au, suggesting that the rise in the relative halo density
is not solely due to the transfer of strahl electrons into the halo.

Unified Astronomy Thesaurus concepts: The Sun (1693); Heliosphere (711); Plasma physics (2089); Solar
wind (1534)

1. Introduction

The solar wind is a highly ionized plasma consisting of
protons, α-particles, trace amounts of heavier ions, and
electrons flowing continuously out of the corona and filling
the heliosphere. The ions contribute to most of the mass and
momentum fluxes in the solar wind due to their greater mass,
while the relatively light electrons play a key role in solar wind
dynamics as the main carrier of heat flux due to their much
larger thermal speeds (Marsch 2006). In collisional plasmas,
Coulomb collisions maintain local thermodynamic equilibrium
(Feldman et al. 1975). However, the solar wind is mostly
collisionless, which means that, above a certain energy, the
particle velocity distribution function (VDF) can deviate from
that of a classical isotropic Maxwellian equilibrium distribu-
tion. Decades of solar wind observations at heliocentric
distances greater than 0.3 au have shown that the electrons in
the solar wind can often be categorized into three distinct
populations: the core, the halo, and the strahl (Feldman et al.
1975; Maksimovic et al. 2005; Štverák et al. 2009). The core
represents the thermal part of the overall electron distribution
with energy 50 eV. It is usually described by a (bi-)
Maxwellian distribution function at 1 au (e.g., Štverák et al.
2009). The core contains 90%–95% of the total local electron
density (Maksimovic et al. 2005). The Maxwellian nature of
the core is attributed to collisions. At higher energies, at which
collisions are less effective, nonequilibrium structures such as
beams and high-energy tails can develop and survive. The halo
and strahl populations represent the electrons in the suprather-
mal energy range (50 eV). The halo exhibits a greater

temperature and an enhanced high-energy tail compared to the
Maxwellian core distribution. It is often characterized as a (bi-)
κ distribution (e.g., Štverák et al. 2009). The core and the halo
are quasi-isotropic and thus show significant particle fluxes at
all pitch angles. Conversely, the strahl is usually seen as a
collimated, magnetic-field-aligned beam of electrons in the
suprathermal energy range, moving parallel, or antiparallel, to
the local magnetic field (Gosling et al. 1987). The strahl
population is more often seen in the fast wind than in the slow
wind (Rosenbauer et al. 1977).
Due to their weak collisionality, suprathermal electrons

preserve some of their coronal characteristics and thus convey
information about their coronal source regions (Scudder &
Olbert 1979; Berčič et al. 2020). Therefore, precise descriptions
of the electron VDF and its evolution are fundamental to
determining the processes responsible for the solar wind
acceleration (Jockers 1970; Lemaire & Scherer 1971; Maksimovic
et al. 1997; Zouganelis et al. 2004). For example, the exospheric
theory of the solar wind assumes the electron distribution to be
collisionless above the exobase. It predicts that the evolution of
the electron VDF through the heliosphere is driven by velocity
filtration and ambipolar diffusion created by the interplanetary
electric field (Maksimovic et al. 1997). Even though this model
predicts the acceleration of the solar wind, the observed nature
of the electron VDF in the heliosphere shows some incon-
sistencies with its predictions (Maksimovic et al. 2001). However,
Lie-Svendsen et al. (1997) modified the model by solving the
Boltzmann equation with the Fokker–Planck approximation for
collisions and were able to produce results showing a strahl
population consistent with that observed at 0.3 au, but with no
halo present.
On average, the evolution of the core density, nc, with radial

distance, r, is in excellent agreement with expectations for an
isotropically expanding gas, for which nc∝ r−2. In contrast, the
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halo and strahl populations show more complex density
profiles than a steady radial expansion from 0.3 to 4 au
(Maksimovic et al. 2005; Štverák et al. 2009). Under purely
adiabatic conditions, the strahl population would continue to
narrow in pitch angle as it propagates radially away from the
Sun into regions of lower magnetic field strength, due to
conservation of the magnetic moment. However, this is not
generally observed, and the strahl appears to undergo
significant pitch-angle scattering, as its width gradually
increases with radial distance (Hammond et al. 1996; Anderson
et al. 2012; Graham et al. 2017). In a simple model, Owens
et al. (2008) examine the combined effects of adiabatic
focusing and a constant rate of scattering on the electron
populations. According to this model, a constant scattering rate
dominates over the adiabatic focusing beyond ∼0.1 au, and the
strahl pitch-angle width thus increases with heliocentric
distance. Moreover, the strahl parallel temperature does not
vary with radial distance close to the Sun (Berčič et al. 2020),
which supports the assumption that the strahl carries informa-
tion about the coronal temperature. However, the exact physics
of the origin of the strahl is still unclear.

The origin of the radial evolution of the halo parameters
remains elusive, although beam instabilities and resonant
wave–particle interactions are potential mechanisms for the
scattering of strahl electrons into the halo, while leaving the
core relatively unaffected (Vocks et al. 2005; Saito & Gary
2007). Alternatively, Coulomb collisions (Horaites et al. 2017)
or background turbulence (Saito & Gary 2007) can play similar
roles in the evolution of the halo.

The solar wind near the Sun is more pristine, or less
processed by transport-related effects, which means that the
electron distribution function is likely to be closer to the
original distribution in the outer corona of the Sun. Comparing
electron distributions at different distances from the Sun with
those recorded very close to the Sun enables us to improve our
understanding of processes that facilitate solar wind accelera-
tion and heating. At the same time, it allows us to probe the
mechanisms that modify the distribution as the solar wind
travels to greater heliocentric distances. We present the
evolution of macroscopic quantities such as the density and
temperature of the thermal and suprathermal populations at
heliocentric distances below 0.3 au, which has not been
examined using data from missions launched prior to Parker
Solar Probe (PSP).

In this paper, we develop a fitting routine, which in part uses
machine learning, to fit the electron VDFs measured by
NASA’s PSP to model distributions for the core, halo, and
strahl during PSP’s near-Sun encounters 2 through 5. Building
on similar work by Maksimovic et al. (2005), Štverák et al.
(2009), and Halekas et al. (2020), we extend the observational
range to cover the region from ∼0.13 to 0.5 au, and use data
with higher time resolution from PSP, to further examine the
nature and evolution of the three electron populations. In
Section 2, we discuss our preparation of the PSP data, and in
Section 3, we describe our fitting routine and the machine
learning algorithm to determine breakpoints in the distribu-
tions. Our results are presented in Section 4. We then discuss
the results in Section 5 in the context of previous measurements
at greater heliocentric distances. We finally provide a summary
and conclusions in Section 6.

2. Data Handling

PSP was launched in 2018 August and will eventually
achieve a closest perihelion distance of 9.86 solar radii (Rs) in
2024, giving us unprecedented measurements of the Sun’s
corona. Our analysis addresses observations over four
perihelion passes or “encounters”: encounter 2 (2019 March
30–April 10), encounter 3 (2019 August 16–September 20),
encounter 4 (2020 January 24–February 4), and encounter 5
(2020 May 20–June 15). During the data intervals used in this
study, PSP’s closest perihelion is at a heliocentric distance of
0.13 au (27 Rs).
For the main part of our analysis, we use data from the Solar

Wind Electrons, Alphas and Protons (SWEAP, Kasper et al.
2016) instrument suite. SWEAP measures the 3D electron VDF
with the Solar Probe Analyzer—Electron (SPAN-E) sensor
consisting of two top-hat electrostatic analyzers (ESAs):
SPAN-A and SPAN-B. Together, the two ESAs measure
electrons arriving from across almost the full sky using
orthogonally positioned 120°× 240° fields of view (FOVs),
over an energy range from 2 to 1793 eV during our
measurement intervals. SPAN-A is located on the anti-ram
side of the spacecraft and SPAN-B is located on the ram side.
Each ESA samples over 16 azimuth, 8 elevation, and 32 energy
bins. The azimuth resolution of each sensor is either 6° or 24°
depending on the look direction, and covers a total of 240°. The
elevation has a resolution of ∼20°. SPAN-A and SPAN-B each
contain a mechanical attenuator system, which consists of a
series of slits that are engaged when the particle counts
approach the saturation limits of the sensor. During periods of
attenuation, the total particle flux is reduced by a factor of 10.
SPAN-E electron VDF measurements during encounters
typically have a measurement cadence of 13.98 s. More details
about the operational modes of SPAN-E are described by
Whittlesey et al. (2020).
In this work, we use SPAN-E level 3 pitch-angle data. The

level 3 data are provided in 32 energy bins and in 12 pitch-
angle bins of width 15° with bin centers ranging from 7°.5 to
172°.5. In the production of the level 3 data set, the
measurements from both sensors (SPAN-A and SPAN-B) are
resampled from their intrinsic resolution onto this pitch-angle
grid. These level 3 data are provided in units of differential
energy flux (cm−2 s−1 sr−1 eV−1 eV).
In order to distinguish between solar wind streams with

different bulk speeds, we use data from SWEAP’s Solar Probe
Cup (SPC) sensor and SPAN-i. We utilize the SPC sensor to
obtain the proton bulk speed moment denoted as wp_moment
for encounters 2 and 3 (Case et al. 2020). The SPC is a Faraday
cup that is mounted near the spacecraft heat shield. The SPC
measurement cadence is higher than SPAN-E’s, and thus in this
work, our SPC moments are averaged over the SPAN-E
integration times. We also use the proton bulk speed values for
encounters 4 and 5 using fits to the proton measurements from
SPAN-i.
We perform bi-Maxwellian fits to the proton core distribu-

tion function from the spi_sf00_8dx32ex8a data product,
observed by SPAN-i, using the methodology described by
Woodham et al. (2020), based on earlier routines developed by
Stansby et al. (2018). Only the proton core speed is used from
these fits in this work. The SPAN-i measurement cadence is
higher than SPAN-E’s and thus in this work the values are
averaged over the SPAN-E integration times.
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Parts of the distribution are missing due to spacecraft
obstruction. To mitigate this, we remove any VDFs for which
more than 20% of the data are missing. The level 3 data are
converted from differential energy flux to the phase space
density through

( ) ( ) ( )f v v
m

V
J E dA d dE dt, , , 1e

2
a= W^

where f is the phase space density, V is the velocity, J is the
differential energy flux (DEF), Ω is the solid angle, and dt is the
acquisition time per elevation and energy bin.

As PSP approaches the Sun, the UV radiation reaching the
spacecraft surface generates increasing numbers of secondary
electrons, which affect the lower energy bins. Halekas et al.
(2020) account for these lower-energy secondary electrons in
their fitting model by assuming the secondary electrons have a
Maxwellian distribution with a fixed temperature of 3.5 eV. As
our data set spans over two years we note large variations in the
nature of the secondary electrons. In our fitting procedure, to
avoid the effects of secondary electrons especially during the
encounters, we thus ignore all data points associated with
energies below 30 eV. This selection criterion makes core-
temperature measurements below 30 eV less reliable than
measurements at higher core temperatures.

3. Distribution Fitting

The fitting technique is widely used in solar and space
plasma physics in order to derive plasma bulk parameters from
observations (Maksimovic et al. 2005; Štverák et al. 2009;
Stansby et al. 2018; Berčič et al. 2020; Halekas et al. 2020;
Nicolaou et al. 2020). To capture the properties of the
electrons, we analytically describe the anticipated distribution
function and then fit to the measured data. Once fitted, we
obtain parameters such as density, temperature, and bulk speed
of each modeled population. Similar to Maksimovic et al.
(2005), we fit the core electrons with a bi-Maxwellian function
in the magnetic-field-aligned frame, while we fit a bi-κ function
to the halo population. Once the core and halo are fitted,
Maksimovic et al. (2005) subtract the resulting core–halo
distribution model from the observed distribution. They
integrate the remaining population in velocity space to obtain
macroscopic strahl properties. Štverák et al. (2009) perform a
similar fitting routine, but modify it by fitting the suprathermal
components with a truncated model, such that suprathermal
components are restricted to the suprathermal parts of velocity
space. Both studies show that the nonthermal halo population is
modeled well by a bi-κ and the core by a bi-Maxwellian, but
Štverák et al. (2009) apply a different methodology, using a
truncated κ-model to represent the strahl. This shows that,
closer to the Sun, the κ index of the strahl population
approaches a value of 10, which provides a distribution that is
close to a Maxwellian. In our fit model, we employ machine
learning to determine the breakpoint energies of the measured
distribution and then use these in the fitting routine to constrain
the fits, as described in Section 3.1. The breakpoint energy is
defined as the energy at which the nonthermal structures
deviate from the thermal Maxwellian distribution (Feldman
et al. 1975; Štverák et al. 2009). We discuss the fitting routine
in Section 3.2 and the error analysis in Section 3.3.

3.1. Determination of Breakpoints through Machine Learning

As our fitting routine uses the breakpoint energy between the
core and halo as an input, we employ the machine learning
techniques described by Bakrania et al. (2020) that use
unsupervised learning algorithms to determine these breakpoint
energies. We also use these techniques to separate halo and
strahl electrons in pitch-angle and energy space. This technique
uses the K-means clustering method (Arthur & Vassilvitskii
2007) from the scikit-learn library (Pedregosa et al.
2011). K-means clustering works by grouping a set of
observations into K clusters, based on similarities between
the observations. Unsupervised learning algorithms do not
require the user to assign labels to training data, thereby
reducing bias (Arthur & Vassilvitskii 2007). In our method, we
manually set the number of clusters in the K-means algorithm to
2, which represents the core cluster and a suprathermal cluster.
The algorithm calculates the breakpoint energy at a specific pitch
angle by separating the energy distributions, at that pitch angle,
into two clusters with the mid-point determined to be the
breakpoint energy.
The K-means algorithm clusters these energy distributions

by minimizing the function

( )x , 2
i

u

j

K

ij i j
1 1

2
2åå w m-

= =

=

 

where

( )
x

, 3j
i
u

ij i

i
u

ij

1

1

m
w
w

=
å

å
=

=

( )x j1 if belongs to cluster
0 otherwise,

4ij
iw = ⎧

⎨⎩

and u is the number of 3-tuples at the defined pitch angle. In
Equation (2), xi is defined as the vector representation of the
differential energy flux tuples, where the index i indicates
tuples of three adjacent energy bins (i.e., energy distributions
that range across three energy bins). The variable μj is the
vector representation of two random DEF tuples, where the
index j labels each cluster. The K-means algorithm calculates
the breakpoint energy by: (1) randomly selecting two DEF
vectors to become the central points, or “centroids” of each
cluster, μj, (2) allocating each DEF vector, xi, to its nearest
centroid, by finding the smallest least-square error between that
vector and the centroids, (3) determining new centroids, μj, by
averaging the DEF vectors assigned to each of the previous
centroids, (4) re-allocating each DEF vector, xi, to its new
closest centroid, μj, and (5) repeating steps 3 and 4 until no
more new re-allocations occur. After the algorithm has
computed the two clusters, the breakpoint energy at the
relevant pitch angle is calculated as the center between the
highest energy bin in the lower-energy cluster (which
represents the core) and the lowest energy bin in the higher-
energy cluster (which represents the suprathermal populations).
In order to distinguish between strahl and halo electrons, we

apply this method to both pitch-angle and energy distributions.
The method used for distinguishing between pitch-angle
distributions is analogous to the method described above, with
xi now defining a pitch-angle distribution at a certain energy.
However, the K-means algorithm now finds the “break” in
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pitch angle. A detailed description of this method and an
analysis of its effectiveness are provided by Bakrania et al.
(2020). Arthur & Vassilvitskii (2007) details a comprehensive
and more general account of the K-means algorithm.

After applying this method, the K-means algorithm outputs a
list of pitch-angle bins, energy bins, and time-stamps that
characterize the transition from core to suprathermal electrons.
With these outputs, we obtain a set of parameters, including
times when a strahl is present, strahl energies, and widths,
which we use to constrain our fitting analysis.

3.2. Fitting of the VDF

We fit the observed distribution functions with the sum of
three analytical expressions that separately describe each of the
electron populations, namely the core, halo, and strahl:

( )f f f f , 5e c h s= + +

where fc is the fitted core, fh is the fitted halo, and fs is the fitted
strahl. Following on from previous work (Maksimovic et al.
2005; Štverák et al. 2009; Berčič et al. 2020; Halekas et al.
2020), the core electrons are modeled with a two-dimensional
bi-Maxwellian distribution function:

( )f
N

V V

V

V

V

V
exp , 6c

c

c
3 2 2

2

2

2

2
c c c

p
= - -

w^

^

^w w w





⎛

⎝
⎜

⎞

⎠
⎟

where Nc is the core density, V cw is the core parallel thermal
velocity, and V c^w is the core perpendicular thermal velocity.
For the halo population, we fit to a bi-κ function:
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where Nh is the halo density, V hw is the halo parallel thermal
velocity, V h^w is the halo perpendicular thermal velocity, and κ

is the κ index. For the strahl component, we use a modification
to the previous works cited above and fit to a bi-Maxwellian
drifting in the parallel direction at speed U s with respect to the
magnetic field. Thus, the strahl is described by

( )
( )f

N

V V

V U

V
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⎞

⎠
⎟

where Ns is the strahl density, V sw is the strahl parallel thermal
velocity, V s^w is the strahl perpendicular thermal velocity, and
U s is the strahl parallel bulk velocity.

As there are 11 free parameters involved in the fit (Nc, Nh,
Ns, V cw , V c^w , V hw , V h^w , κ, V sw , V s^w , U s ), we split our fitting
process into two stages. This has the advantage of reducing the
number of nonphysical fits that can arise due to the large
number of degrees of freedom. The first stage is to fit only to
the core + halo model and then fit to the combined model
including the strahl. An example of the results of this stage is
shown in the left panel of Figure 1, which presents the core and
halo fits (blue and red lines respectively) to the data points from
a single measured distribution (purple diamonds). In the second
stage, we use the core–strahl breakpoint energy from our

machine learning algorithm to constrain the relevant velocity
space of the strahl electron population. This second fit captures
the strahl using the drifting Maxwellian model, with the outputs
of the first fit for the core and halo parameters and the strahl
breakpoint energy as fixed inputs to constrain the velocity
space. The right panel of Figure 1 presents the results of this
strahl fit (yellow line) for the example distribution, plotted on
top of the core and halo fits and the data points from the left
panel. The overall fit is shown as the green trace, and from
visual inspection it can be seen that a reasonable overall fit is
achieved.
The fits are performed using the Levenberg–Marquardt

fitting algorithm in log-space to capture the 2D electron
distribution function in the field-aligned velocity space
(Levenberg 1944) with each point weighted with the errors
described in Section 3.3. The free parameters are constrained as
follows: core, halo, and strahl density must be greater than 0;
the strahl parallel bulk velocity must be less than
2.5× 107 m s−1; and κ must be greater than 1.5 and less
than 25.
A goodness-of-fit parameter is evaluated by comparing

measured and modeled points along the perpendicular direc-
tion, because it is expected that there is no strahl present at
these pitch angles, and along the parallel or antiparallel
direction, which does not have the strahl (i.e., the anti-strahl
direction). This allows us to capture the anisotropic nature of
the core and halo populations. To evaluate the overall goodness
of the fit, we evaluate the reduced χ2 parameter:

( ) ( )
n m

O C1
, 9

i

i i2
2

2åc
s

=
-

-

where ( )/O flog 1 s mi i
3 6= - are the measured data based on

the measured full distribution function f̃i , ( )/C flog 1 s mi e
3 6= -

are the fitted data, n is the number of fitted data points, m is
the number of variables to fit, and σ2 is the variance of

( )/flog 1 s m3 6- .
We assume that the bulk speeds of the core and halo

populations are zero in our fit models in the instrument frame.
Consequently, any measured distributions with significant
nonzero drifts manifest as a large reduced χ2 value and are
excluded from the analysis. Once that is done, we undertake the
analysis of the features of the suprathermal populations by
taking partial moments of the fitted curve by integrating over
the part of velocity space constrained by the breakpoints
obtained from the machine learning algorithm described in
Section 3.1.

3.3. Error Analysis

We model the overall measurement error as a combination of
that given by Poisson statistics and an additional error that
reflects the likely systematic error in the instrument measure-
ment, arising due to the finite micro-channel plate efficiency
and uncertainty in other instrumental effects, which we
combine and capture here as an effective overall uncertainty
in the instrument geometric factor. The Poisson error is the
dominant error source when the number of counts is small. We
quantify the relative error in the geometric factor as 10%, a
value that has been adopted following direct discussions with
the data provider team.
In the creation of the SWEAP VDF data, the value of the

distribution function f at a given energy, azimuth, and elevation
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is calculated based on the raw counts C as

( )f
m C

t E G2
, 10e

2

2
=

D

where Δt is the counter readout time, G is the geometric factor,
and E is the energy. Based on Gaussian error propagation, the
Poisson error and the uncertainty in the geometric factor lead to
the following result for the variance of the data points (i.e., of
log( f )) in our measured distribution function:

( ) ( )
( )m

E t Gf

G

Gln 10 2

1

ln 10
, 11e2

2 2

s =
D

+
D

⎜ ⎟
⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝

⎞
⎠

where ΔG/G= 0.1 is the relative error in the geometric factor.
In our analysis, we only include fits that have χ2� 1.

Overall, we examine over 450,000 electron velocity
distribution functions obtained by PSP SWEAP from the years
2019 and 2020. After applying the χ2 limit and further removal
of some clearly nonphysical fits, we obtain ∼300,000 fits for
further analysis, of which 220,000 have an associated
measurement of solar wind speed from SPC or SPAN-i.

4. Results

Most of the measurements during this time period have
proton bulk speeds of less than 400 km s−1, which we classify
as the slow wind. We split the data into 50 equal-width radial
distance bins, and the median value of a given parameter of
interest in each radial distance bin is calculated. We calculate
the upper and lower error bars for each radial distance bin as
the upper and lower quartiles respectively.

Figure 2 shows the radial evolution of the averaged fitted
parameters. Panel (a) shows the averaged core density as a

function of the heliocentric distance. This is broadly in line
with the expectations for a radial isotropic expansion of this
population. The r−2 trend is represented by the solid green
curve. Below 0.2 au, the halo density (panel (b)) shows only a
moderate dependence on heliocentric distance within the error
bars. However, over the same radial distance range, the strahl
density (panel (c)) has a clearly steeper gradient, which is more
significant.
The thermal speed of the fitted core distribution (panel (e))

decreases with radial distance in this range. The thermal speed
of the fitted halo distribution initially increases from
2.2× 106 m s−1 at 0.13 au to 3.5× 106 m s−1 at 0.23 au, and
thereafter the thermal speed decreases. The parallel thermal
velocity is enhanced above the perpendicular thermal velocity
at all distances shown, indicating a persistent anisotropy in the
parallel direction for the halo population.
The radial evolution of the κ value for the fitted halo

distribution is shown in panel (d). The κ parameter provides a
measure of the nonthermal state of the halo population. As κ
tends to infinity, the distribution becomes closer to a
Maxwellian. For the slow solar wind regime shown here, κ is
low at ∼4 for the shortest distances sampled. The κ value rises
from ∼4 to ∼12 between 0.13 and ∼0.24 au before steadily
decreasing over the rest of the distance range shown.
We also observe that the fit to the strahl component shows a

strong decrease in density with distance in both solar wind
regimes (panel (c)). The strahl thermal speed component is
V Vs s> ^w w closer to the Sun, and slowly decreases with radial
distance, such that the strahl distribution is isotropic (within
error bars) by ∼0.2 au, unlike the core and halo, which both
show clear declines as distance increases.
To examine the complex radial evolution of the suprathermal

population, we numerically integrate the total fitted curve over

Figure 1. Two-step fitting process. The purple diamonds mark the measured distribution at 0.2940 au on 2019 August 25 at 03:28:28 UT, the blue curve represents the
fit for the bi-Maxwellian core, and red the fit for the bi-κ halo. The yellow curve represents the fit for the drifting bi-Maxwellian strahl. The panel on the left shows the
core and halo fits for the measured distribution. The second fit is shown in the right-hand panel where the strahl is fitted. The green curve represents the total fit.
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velocity space using the breakpoints to define the energy and/
or pitch-angle integration limits for the core, halo, and strahl
populations. In Figure 3, we present the integrated density
evolution of the three electron populations on a common scale
with heliocentric distance. Here the integrated core density data
are shown in blue, the integrated halo density in orange, and the
integrated strahl density in yellow. The two suprathermal
populations are at least an order of magnitude lower in density
than the core population across the entire distance range shown.
As mentioned above, the core density falls as r−2 up to 0.25 au.
From 0.25 au, we note a deviation of the core electron
population from the r−2 expansion curve.

Figure 3 shows that from 0.2 au outwards, the halo (orange
curve) makes up most of the suprathermal population, while the

strahl makes up most of this population below 0.2 au. Figure 3
also shows that the evolution of the suprathermal population
with radial distance does not follow an r−2 trend. Below
0.25 au, the halo density decreases with radial distance while
there is a small increase in the strahl density. From 0.25 au
onwards, both populations show a steady decline in density
with increasing radial distance.
To remove the effects of expansion, we look at the relative

densities of the three electron populations with respect to the
total local electron density in a similar way to Štverák et al.
(2009). Figure 4 shows the relative density of the core
population is above 90% across the full distance range
sampled. Thus, the combined density of the suprathermal
populations (shown in these plots by the purple curve) makes

Figure 2. The radial evolution of the fit results for solar wind at speeds less than 400 km s−1. Panel (a) shows the radial evolution of the core density and the black
dashed curve shows the expected evolution of an isotropically expanding gas. Panels (b) and (c) represent the radial evolution of the halo and strahl populations
respectively. Panel (d) shows the radial evolution of κ for the fitted halo population. Panels (e), (f), and (g) represent parallel and perpendicular thermal speeds of the
core, halo, and strahl respectively. Panel (h) shows the radial evolution of the strahl bulk speed.

Figure 3. The blue curve represents the core density, the orange curve is the halo density, the yellow curve is the strahl density, and the black dashed curve is the
theoretical prediction for an isotropically expanding gas.
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up less than 10% of the total electron density observed at any
distance. From 0.124 to 0.2 au, the relative halo density (orange
curve) increases from less than 1% to ∼10% of the total
electron density in all cases. Between 0.15 and 0.2 au, there is a
point in each plot at which the relative halo density is equal to
the relative strahl density, which we refer to as the halo–strahl
crossover point in this paper. It is not straightforward to
determine the exact location of the halo–strahl crossover point
due to the size and overlaps in the error bars. The relative strahl
density stays approximately constant (∼1%) below 0.2 au but
there is a sharp rise in relative halo density from less than 1% to
∼7%. The total fractional density of the combined suprather-
mal populations rises from ∼1% at the closest distances
sampled (∼0.13 au) to almost 10% above 0.25 au.

To examine this in more detail, we investigate the average
shape of the distribution function below the halo–strahl

crossover point. For this selection of data, most of the VDFs
can be described well with just the core and strahl elements of
the model fit, with no explicit need to include a halo model, as
seen from the example distribution/fits illustrated in Figure 5.

5. Discussion

The relative densities and radial trends of properties of the
core electron population are broadly in agreement with
previous observations by Maksimovic et al. (2005) and Štverák
et al. (2009) for distances 0.28 au. These authors demon-
strate, for this distance range, that the relative density of the
strahl is greater than the relative density of the halo closer to the
Sun (below ∼0.6 au). Contrary to these previous results, our
observations show that the relative density of the two
suprathermal electron populations does not evolve in an

Figure 4. The blue curve represents the core density, the orange curve is the halo density, the green curve is the strahl density, and the purple curve is the total
suprathermal population.

Figure 5. A representative distribution recorded at a distance of ∼0.13 au. The black trace with diamonds shows the measured distribution. The blue trace represents
the output of our fitting routine for a Maxwellian core, and the red trace represents the output for the fit to a Maxwellian strahl drifting along the B-field direction. The
pink vertical dashed lines represent the 30 eV measurement energy below which we do not fit to data due to secondary contamination, as discussed in the text. The
left-hand panel shows a cut along the parallel velocity direction, while the middle panel shows the cut along V∥ = 0 in the perpendicular direction. In the right-hand
panel, the green trace shows the final combined fitted curve to the measured distribution. This panel indicates an excellent fit to the data without the need to infer a
third fit for the halo model, meaning that the halo contribution to this distribution is negligible.
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inverse manner below 0.3 au, where the strahl density
decreases as the halo density increases. Below 0.2 au, the total
fractional density of the suprathermal population is not
constant, but drops from ∼10% to ∼1%. This implies that
with increasing distance from the Sun, there must be some
process or processes driving an increase in the total number of
electrons in the suprathermal energy range. A candidate source
for these electrons is the core in this region. If this is the case,
then it is possible that the quasi-isotropic nature of the halo can
be explained by a process that creates the halo from the core
population. Extrapolating the lines in Figure 4 to distances
closer to the Sun, we notice that for the slow solar wind, the
distribution function is possibly composed of a core and a
strahl model without a significant halo component.

The fact that the fractional strahl density remains relatively
constant at ∼1% and the fractional halo density increases from
less than 1% at 0.124 au to ∼7% at 0.2 au shows that the halo
cannot be formed from the scattering of strahl alone as suggested
by Štverák et al. (2009). Thus, there appears to be more than one
process contributing to the growth of the halo population. This
may be a multistage process in which, say, a fraction of the core
population is accelerated to suprathermal energies by a resonant
wave–particle interaction or other plasma processes. Alterna-
tively, larger-scale dynamics may play a role, such as the field-
aligned acceleration of reconnection outflow beams, followed by
scattering in pitch angle to form the halo. Further analysis is
needed to confirm the nature of any such coupling between the
core and the suprathermal population. We also define the halo–
strahl crossover point, described above as the point where the
halo density and strahl density are equal. Below the halo–strahl
crossover point, most of the suprathermal population moves
along the field line while above this point most of the
suprathermal population is present at all pitch angles. This
point may be important in the study of processes that concern the
evolution of the suprathermal populations. However, the
fractional trends in Figure 3 show that the total suprathermal
population continues to decrease in the same radial range.

We also specifically examine electron VDFs that are
recorded at radial distances below the halo–strahl crossover
point. Electron distributions below 0.15 au can in general be
well described with only a core and a strahl model as shown by
Figure 5. Another feature we often note at the closest distances
sampled is a deficit in the measured distribution function, with
reference to the core fit, in the anti-strahl direction. Halekas
et al. (2020) examine the first two orbits and report a similar
truncation in the Maxwellian. This deficit is not included
explicitly by our model, and this means our core density at the
closest distances to the Sun may be slightly overestimated. If
the deficit is sufficiently large, then this would result in a large
reduced sum of the squares and be discarded from our analysis.

Another interesting result from our analysis is the variation
in the κ value with radial distance. The variation in κ indicates
changes in the shape of the high-energy tails with radial
distance. At the closest distance sampled, the κ value is ∼3,
and it rises to 6 around 0.25 au. When we compare this rise in κ
with the trend in halo density shown by Figure 4, we notice that
the halo density is less than 0.01% and rises to a few percent.

From Figures 2(e)–(g), we observe the nonadiabatic nature
of the slow solar wind. At the closest distance sampled, there
seems to be a persistent anisotropy in all three electron
populations, with the strahl exhibiting the strongest parallel
anisotropy. The core population cools with radial distance but

with gradients in the thermal speed. This shows that the cooling
rate varies with radial distance while remaining quasi-isotropic
with the thermal speeds within the error bars. However, the
halo thermal speed initially rises from 2× 106 m s−1 at 0.13 au
to 3.7× 106 m s−1 at 0.25 au and then decreases with radial
distance. The initial rise can be attributed to the growth of the
halo as more particles populate the upper halo energy range.
We are unaware of any theory that explains these thermal
trends. Further research into what drives these trends is needed.
As is evident from Figure 2, the strahl parallel thermal

velocity does not vary with radial distance when fitted to a
drifting bi-Maxwellian model. This result is also reported by
Berčič et al. (2020). It is consistent with a recent kinetic model
for the strahl evolution in the inner heliosphere, which also
shows that the strahl parallel temperature and bulk velocity are
constant with heliocentric distance (Jeong et al. 2022). In
exospheric models, the strahl is believed to carry information about
the exobase (Jockers 1970), which means that the constant strahl
parallel temperature and bulk speed provide critical information
about the coronal electrons at the wind’s origin. The strahl parallel
thermal speed from our fits is approximately the same magnitude
as the typical temperature of the corona (≈106 K). Further analysis
of data closer to the Sun obtained from future PSP encounters
will be needed to confirm whether the strahl parallel temperature
indeed preserves the coronal electron temperature. The core and
strahl have a parallel anisotropy closer to the Sun at 0.13 au, but
this anisotropy decreases with radial distance and approaches
isotropy within the statistical errors. Another new finding we show
with our work is that the strahl parallel bulk speed stays roughly
constant within the error bars. This means that the strahl is
potentially a useful indicator of the origins of the source regions of
the solar wind.
In exospheric solar wind models, the electrons with energy

less than the electric potential at a given radial distance are
reflected and are trapped in a potential well (Maksimovic et al.
2001). The deficit in the distribution function that we observe
in the anti-strahl direction could then be a result of this trapping
boundary. However, in this theory, the cutoff in the distribution
is quasi-discontinuous, while we observe a smoother drop
below the Maxwellian VDF values in the sunward side of the
VDF. We also observe that this signature becomes weaker with
radial distance. This change in the signature may be explained
by collisions, which are usually ignored by exospheric models
beyond the exobase. Regardless, more research is required to
better understand these deficits by quantifying the point where
the Maxwellian truncates, since they potentially give insight
into the role of the interplanetary electrostatic potential in the
acceleration of the solar wind.

6. Conclusions

We apply a new fitting routine to electron VDF measure-
ments, which for the first time incorporates breakpoint energies
obtained from a machine learning algorithm (Bakrania et al.
2020). This new technique is applied to a large data set of PSP
SPAN observations at varying distances from the Sun. We use
our fitting results to investigate the evolution of the core, halo,
and strahl for encounters 2, 3, 4, and 5. We show that the core
makes up more than 90% of the total electron density for all the
distances sampled, whereas the nonthermal electrons make up
less than 10%, as previously observed for distances >0.3 au
(Maksimovic et al. 2005; Štverák et al. 2009; Halekas et al.
2020). The radial r−2 dependence of the core density extends
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below 0.3 au. We also show that the relative suprathermal
population increases from ∼1% at the closest distances
sampled to ∼10% around 0.22 au, which indicates that there
is a relative increase in the nonthermal particle densities over
the inner regions of the heliosphere.

Our analysis does not reveal a distinct inverse relationship
between the halo and strahl populations below 0.25 au. Rather,
we find that the relative strahl density stays approximately
constant while the relative halo density increases. We introduce
a point called the halo–strahl crossover point, where the relative
halo density is equal to the relative strahl density. At the closest
distances sampled below this point, the distribution can
generally be well modeled with only a core and strahl model
with little/no contribution from the halo model. The low halo
density closer to the Sun suggests the halo is diffused and drops
below the one-count sensitivity level of the instrument.
Another key feature we report is that below the halo–strahl
crossover point, we generally see a distinct deficit in the core
population in the anti-strahl direction. This indicates that there
are fewer particles in the part of velocity space corresponding
to particles returning in the direction of the Sun than expected
from the Maxwellian fit. Such a cutoff in the distribution is
predicted by Maksimovic et al. (2001). However, above the
halo–strahl crossover point, we do not generally see such a
deficit in the distribution with respect to the modeled fits.

In the future, we aim to quantify the nature of these deficits
with a bespoke fitting routine that helps us to better understand
the role of the interplanetary electrostatic potential in solar
wind acceleration. We also aim to examine solar wind
energetics to understand the mechanisms at play that lead to
the growth of the nonthermal populations. With the advent of
Solar Orbiter, an interesting avenue for further research is to
look at alignments with PSP to study the same plasma parcel
with this technique.
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