2,659 research outputs found

    The HATNet and HATSouth Exoplanet Surveys

    Full text link
    The Hungarian-made Automated Telescope Network (HATNet) has been in operation since 2003, with the key science goal being the discovery and accurate characterization of transiting extrasolar planets (TEPs) around bright stars. Using six small, 11\,cm\ aperture, fully automated telescopes in Arizona and Hawaii, as of 2017 March, it has discovered and accurately characterized 67 such objects. The HATSouth network of telescopes has been in operation since 2009, using slightly larger, 18\,cm diameter optical tubes. It was the first global network of telescopes using identical instrumentation. With three premier sites spread out in longitude (Chile, Namibia, Australia), the HATSouth network permits round-the-clock observations of a 128 square arcdegree swath of the sky at any given time, weather permitting. As of this writing, HATSouth has discovered 36 transiting exoplanets. Many of the altogether ~100 HAT and HATSouth exoplanets were the first of their kind. They have been important contributors to the rapidly developing field of exoplanets, motivating and influencing observational techniques, theoretical studies, and also actively shaping future instrumentation for the detection and characterization of such objects.Comment: Invited review chapter, accepted for publication in "Handbook of Exoplanets", edited by H.J. Deeg and J.A. Belmonte, Springer Reference Work

    Bioclimatic and Regenerative Design Guidelines for a Circular University Campus in India

    Get PDF
    To transform the negative impacts of buildings on the environment into a positive footprint, a radical shift from the current, linear ‘make-use-dispose’ practice to a closed-loop ‘make-use-return’ system, associated with a circular economy, is necessary. This research aims to demonstrate the possible shift to a circular construction industry by developing the first practical framework with tangible benchmarks for a ‘Circular University Campus’ based on an exemplary case study project, which is a real project development in India. As a first step, a thorough literature review was undertaken to demonstrate the social, environmental and economic benefits of a circular construction industry. As next step, the guideline for a ‘Circular University Campus’ was developed, and its applicability tested on the case study. As final step, the evolved principles were used to establish ‘Project Specific Circular Building Indicators’ for a student residential block and enhance the proposed design through bioclimatic and regenerative design strategies. The building’s performance was evaluated through computational simulations, whole-life carbon analysis and a circular building assessment tool. The results demonstrated the benefits and feasibility of bioclimatic, regenerative building and neighbourhood design and provided practical prototypical case study and guidelines which can be adapted by architects, planners and governmental institutions to other projects, thereby enabling the shift to a restorative, circular construction industry

    HAT-P-12b: A Low-Density Sub-Saturn Mass Planet Transiting a Metal-Poor K Dwarf

    Get PDF
    We report on the discovery of HAT-P-12b, a transiting extrasolar planet orbiting the moderately bright V=12.8 K4 dwarf GSC 03033-00706, with a period P = 3.2130598 +- 0.0000021 d, transit epoch Tc = 2454419.19556 +- 0.00020 (BJD) and transit duration 0.0974 +- 0.0006 d. The host star has a mass of 0.73 +- 0.02 Msun, radius of 0.70 +- ^0.02_0.01 Rsun, effective temperature 4650 +- 60 K and metallicity [Fe/H] = -0.29 +- 0.05. We find a slight correlation between the observed spectral line bisector spans and the radial velocity, so we consider, and rule out, various blend configurations including a blend with a background eclipsing binary, and hierarchical triple systems where the eclipsing body is a star or a planet. We conclude that a model consisting of a single star with a transiting planet best fits the observations, and show that a likely explanation for the apparent correlation is contamination from scattered moonlight. Based on this model, the planetary companion has a mass of 0.211 +- 0.012 MJup, and a radius of 0.959 +- ^0.029_0.021 RJup yielding a mean density of 0.295 +- 0.025 g cm^-3. Comparing these observations with recent theoretical models we find that HAT-P-12b is consistent with a ~ 1-4.5 Gyr, mildly irradiated, H/He dominated planet with a core mass Mc <~ 10 Mearth. HAT-P-12b is thus the least massive H/He dominated gas giant planet found to date. This record was previously held by Saturn.Comment: Accepted for publication in ApJ, 13 pages, 9 figures, 5 table

    The Hunt for Exomoons with Kepler (HEK): IV. A Search for Moons around Eight M-Dwarfs

    Full text link
    With their smaller radii and high cosmic abundance, transiting planets around cool stars hold a unique appeal. As part of our on-going project to measure the occurrence rate of extrasolar moons, we here present results from a survey focussing on eight Kepler planetary candidates associated with M-dwarfs. Using photodynamical modeling and Bayesian multimodal nested sampling, we find no compelling evidence for an exomoon in these eight systems. Upper limits on the presence of such bodies probe down to 0.4M\sim0.4M_{\oplus} in the best case. For KOI-314, we are able to confirm the planetary nature of two out of the three known transiting candidates using transit timing variations. Of particular interest is KOI-314c, which is found to have a mass of 1.00.3+0.4M1.0_{-0.3}^{+0.4}M_{\oplus}, making it the lowest mass transiting planet discovered to date. With a radius of 1.610.15+0.16R1.61_{-0.15}^{+0.16}R_{\oplus}, this Earth-mass world is likely enveloped by a significant gaseous envelope comprising 1713+12\geq17_{-13}^{+12}% of the planet by radius. We find evidence to support the planetary nature of KOI-784 too via transit timing, but we advocate further observations to verify the signals. In both systems, we infer that the inner planet has a higher density than the outer world, which may be indicative of photo-evaporation. These results highlight both the ability of Kepler to search for sub-Earth mass moons and the exciting ancillary science which often results from such efforts.Comment: 15 pages, 13 figures, 6 tables. Accepted in Ap

    Detection of the evolutionary stages of variables in M3

    Full text link
    The large number of variables in M3 provides a unique opportunity to study an extensive sample of variables with the same apparent distance modulus. Recent, high accuracy CCD time series of the variables show that according to their mean magnitudes and light curve shapes, the variables belong to four separate groups. Comparing the properties of these groups (magnitudes and periods) with horizontal branch evolutionary models, we conclude that these samples can be unambiguously identified with different stages of the horizontal branch stellar evolution. Stars close to the zero age horizontal branch (ZAHB) show Oosterhoff I type properties, while the brightest stars have Oosterhoff II type statistics regarding their mean periods and RRab/RRc number ratios. This finding strengthens the earlier suggestion of Lee et al. (1990) connecting the Oosterhoff dichotomy to evolutionary effects, however, it is unexpected to find large samples of both of the Oosterhoff type within a single cluster, which is, moreover, the prototype of the Oosterhoff I class globular clusters. The very slight difference between the Fourier parameters of the stars (at a given period) in the three fainter samples spanning over about 0.15 mag range in M_V points to the limitations of any empirical methods which aim to determine accurate absolute magnitudes of RR Lyrae stars solely from the Fourier parameters of the light curves.Comment: 4 pages, 4 figures. Submitted to Astrophys. J. Letter

    Refined stellar, orbital and planetary parameters of the eccentric HAT-P-2 planetary system

    Get PDF
    We present refined parameters for the extrasolar planetary system HAT-P-2 (also known as HD 147506), based on new radial velocity and photometric data. HAT-P-2b is a transiting extrasolar planet that exhibits an eccentric orbit. We present a detailed analysis of the planetary and stellar parameters, yielding consistent results for the mass and radius of the star, better constraints on the orbital eccentricity, and refined planetary parameters. The improved parameters for the host star are M_star = 1.36 +/- 0.04 M_sun and R_star = 1.64 +/- 0.08 R_sun, while the planet has a mass of M_p = 9.09 +/- 0.24 M_Jup and radius of R_p = 1.16 +/- 0.08 R_Jup. The refined transit epoch and period for the planet are E = 2,454,387.49375 +/- 0.00074 (BJD) and P = 5.6334729 +/- 0.0000061 (days), and the orbital eccentricity and argument of periastron are e = 0.5171 +/- 0.0033 and omega = 185.22 +/- 0.95 degrees. These orbital elements allow us to predict the timings of secondary eclipses with a reasonable accuracy of ~15 minutes. We also discuss the effects of this significant eccentricity including the characterization of the asymmetry in the transit light curve. Simple formulae are presented for the above, and these, in turn, can be used to constrain the orbital eccentricity using purely photometric data. These will be particularly useful for very high precision, space-borne observations of transiting planets.Comment: Revised version, accepted for publication in MNRAS, 11 pages, 6 figure

    The Hunt for Exomoons with Kepler (HEK): II. Analysis of Seven Viable Satellite-Hosting Planet Candidates

    Full text link
    From the list of 2321 transiting planet candidates announced by the Kepler Mission, we select seven targets with favorable properties for the capacity to dynamically maintain an exomoon and present a detectable signal. These seven candidates were identified through our automatic target selection (TSA) algorithm and target selection prioritization (TSP) filtering, whereby we excluded systems exhibiting significant time-correlated noise and focussed on those with a single transiting planet candidate of radius less than 6 Earth radii. We find no compelling evidence for an exomoon around any of the seven KOIs but constrain the satellite-to-planet mass ratios for each. For four of the seven KOIs, we estimate a 95% upper quantile of M_S/M_P<0.04, which given the radii of the candidates, likely probes down to sub-Earth masses. We also derive precise transit times and durations for each candidate and find no evidence for dynamical variations in any of the KOIs. With just a few systems analyzed thus far in the in-going HEK project, projections on eta-moon would be premature, but a high frequency of large moons around Super-Earths/Mini-Neptunes would appear to be incommensurable with our results so far.Comment: 32 pages, 11 figures, 23 tables, Accepted to Ap

    HATNet Field G205: Follow-Up Observations of 28 Transiting-Planet candidates and Confirmation of the Planet HAT-P-8b

    Full text link
    We report the identification of 32 transiting-planet candidates in HATNet field G205. We describe the procedures that we have used to follow up these candidates with spectroscopic and photometric observations, and we present a status report on our interpretation of the 28 candidates for which we have follow-up observations. Eight are eclipsing binaries with orbital solutions whose periods are consistent with their photometric ephemerides; two of these spectroscopic orbits are singled-lined and six are double-lined. For one of the candidates, a nearby but fainter eclipsing binary proved to be the source for the HATNet light curve, due to blending in the HATNet images. Four of the candidates were found to be rotating more rapidly than vsini = 50 km/s and were not pursued further. Thirteen of the candidates showed no significant velocity variation at the level of 0.5 to 1.0 km/s . Seven of these were eventually withdrawn as photometric false alarms based on an independent reanalysis using more sophisticated tools. Of the remaining six, one was put aside because a close visual companion proved to be a spectroscopic binary, and two were not followed up because the host stars were judged to be too large. Two of the remaining candidates are members of a visual binary, one of which was previously confirmed as the first HATNet transiting planet, HAT-P-1b. In this paper we confirm that the last of this set of candidates is also a a transiting planet, which we designate HAT-P-8b, with mass Mp = 1.52 +/- 0.18/0.16 Mjup, radius Rp = 1.50 +/- 0.08/0.06 Rjup, and photometric period P = 3.076320 +/- 0.000004 days. HAT-P-8b has an inflated radius for its mass, and a large mass for its period. The host star is a solar-metallicity F dwarf, with mass M* = 1.28 +/- 0.04 Msun and Rp = 1.58 +/- 0.08/0.06 Rsun.Comment: 16 pages, 6 figures, 13 table
    corecore