199 research outputs found

    BIOFUELS, CLIMATE POLICY, AND WATER MANAGEMENT: ASSESSING POLICY-INDUCED SHIFTS ON AGRICULTURE’S EXTENSIVE AND INTENSIVE MARGINS

    Get PDF
    Biofuel expansion efforts and climate mitigation policy could fundamentally alter land management trends in U.S. agriculture and forestry (AF) by mandating biofuel feedstock production and providing incentives for greenhouse gas (GHG) emissions reduction and carbon sequestration from terrestrial sources. Research has shown that biofuel expansion can alter commodity markets, induce agricultural land expansion, and intensify production. Meanwhile, GHG mitigation efforts could limit agricultural expansion, reduce current cultivation, and lower management intensity by incentivizing GHG emissions reduction and carbon sequestration within AF. To date, little work has attempted to quantify biofuel and climate policy-induced shifts together along the extensive and intensive agricultural production margins within a systems-based framework, though such shifts could have resounding implications on agricultural water consumption and quality. This study uses a comprehensive and detailed economic model of the U.S. AF sectors to simulate land management responses to biofuel expansion and GHG policies. While bioenergy production and altered AF management practices are found to significantly reduce GHG emissions, additional water consumption and nutrient use are possible policy outcomes. Specifically, we find that policies that influence shifts to the extensive margin will increase aggregate water use and nutrient application, but lead to lower intensity per-unit area. Conversely, when combined with biofuel mandates climate mitigation incentives lower agricultural land expansion, but lead to higher levels of management intensity. Somewhat contrary to expectations, GHG mitigation incentives cause water and nutrient use intensity to grow at an increasing rate due to the greater level of land use competition. Additionally, important regional trends emerge, as water use and quality concerns grow with the CO2 price in areas with limited GHG mitigation possibilities. This suggests that “water leakage” is possible whereby emissions reduction activities decrease output in one region and stimulate management intensity elsewhere. The potential indirect consequences of combined biofuel and climate mitigation incentives on water resource systems warrant further attention in policy design and future research.Greenhouse gas mitigation, biofuels, water resource management, Environmental Economics and Policy, Production Economics, Resource /Energy Economics and Policy,

    The Impact of Biofuel and Greenhouse Gas Policies on Land Management, Agricultural Production, and Environmental Quality

    Get PDF
    This dissertation explores the combined effects of biofuel mandates and terrestrial greenhouse gas GHG mitigation incentives on land use, management intensity, commodity markets, welfare, and the full costs of GHG abatement through conceptual and empirical modeling. First, a simple conceptual model of land allocation and management is used to illustrate how bioenergy policies and GHG mitigation incentives could influence market prices, shift the land supply between alternative uses, alter management intensity, and boost equilibrium commodity prices. Later a major empirical modeling section uses the U.S. Forest and Agricultural Sector Optimization Model with Greenhouse Gases (FASOMGHG) to simulate land use and production responses to various biofuel and climate policy scenarios. Simulations are performed to assess the effects of imposing biofuel mandates in the U.S. consistent with the Renewable Fuels Standard of the Energy Independence and Security Act of 2007 (RFS2). Simulations are run for several climate mitigation policy scenarios (with varying GHG (CO2) prices and eligibility restrictions for GHG offset activities) with and without conservation land recultivation. Important simulation outputs include time trajectories for land use, GHG emissions and mitigation, commodity prices, production, net exports, sectoral economic welfare, and shifts in management practices and intensity. Direct and indirect consequences of RFS2 and carbon policy are highlighted, including regional production shifts that can influence water consumption and nutrient use in regions already plagued by water scarcity and quality concerns. Results suggest that the potential magnitude of climate mitigation on commodity markets and exports is substantially higher than under biofuel expansion in isolation, raising concerns of international leakage and stimulating the “Food vs. Carbon” debate. Finally, a reduced-form dynamic emissions trading model of the U.S. economy is developed using simulation output from FASOMGHG and the National Energy Modeling System to test the effect of biofuel mandate expansion and domestic offset eligibility restrictions on total economy-wide GHG abatement costs. Findings are that while the RFS2 raises the marginal costs of offsets, full abatement costs depend on a number of policy factors. GHG payment incentives for forest management and non-CO2 agricultural offsets can increase full abatement costs by more than 20%

    BIOFUELS, CLIMATE POLICY, AND WATER MANAGEMENT: ASSESSING POLICY-INDUCED SHIFTS ON AGRICULTURE’S EXTENSIVE AND INTENSIVE MARGINS

    Get PDF
    Biofuel expansion efforts and climate mitigation policy could fundamentally alter land management trends in U.S. agriculture and forestry (AF) by mandating biofuel feedstock production and providing incentives for greenhouse gas (GHG) emissions reduction and carbon sequestration from terrestrial sources. Research has shown that biofuel expansion can alter commodity markets, induce agricultural land expansion, and intensify production. Meanwhile, GHG mitigation efforts could limit agricultural expansion, reduce current cultivation, and lower management intensity by incentivizing GHG emissions reduction and carbon sequestration within AF. To date, little work has attempted to quantify biofuel and climate policy-induced shifts together along the extensive and intensive agricultural production margins within a systems-based framework, though such shifts could have resounding implications on agricultural water consumption and quality. This study uses a comprehensive and detailed economic model of the U.S. AF sectors to simulate land management responses to biofuel expansion and GHG policies. While bioenergy production and altered AF management practices are found to significantly reduce GHG emissions, additional water consumption and nutrient use are possible policy outcomes. Specifically, we find that policies that influence shifts to the extensive margin will increase aggregate water use and nutrient application, but lead to lower intensity per-unit area. Conversely, when combined with biofuel mandates climate mitigation incentives lower agricultural land expansion, but lead to higher levels of management intensity. Somewhat contrary to expectations, GHG mitigation incentives cause water and nutrient use intensity to grow at an increasing rate due to the greater level of land use competition. Additionally, important regional trends emerge, as water use and quality concerns grow with the CO2 price in areas with limited GHG mitigation possibilities. This suggests that “water leakage” is possible whereby emissions reduction activities decrease output in one region and stimulate management intensity elsewhere. The potential indirect consequences of combined biofuel and climate mitigation incentives on water resource systems warrant further attention in policy design and future research

    An Evaluation of the Assisted Living Medicaid Waiver Program

    Get PDF
    In the past decade the number of older people across the United States with disability has increased by about 20%, and the national Medicaid long-term care costs have nearly doubled. In response to these challenges, states are in the process of changing their long-term care delivery systems to include a wider range of service options. The development of the Assisted Living Waiver Program in 2006 represented an additional attempt by Ohio to expand the range of long-term care options for individuals with disability. This study reports findings from the second phase of Ohio's Assisted Living Waiver Program evaluation

    Bats of St. Vincent, Lesser Antilles

    Get PDF
    The chiropteran fauna of the island of Saint Vincent, represented by 12 species, is among the most complex in the Lesser Antilles, being represented by four families including Noctilionidae (1 species), Mormoopidae (1), Phyllostomidae (8), and Molossidae (2). This fauna includes four trophic guilds as represented by Noctilio leporinus (piscivore/insectivore); Glossophaga longirostris and Monophyllus plethodon (nectarivore/pollenivore); Artibeus lituratus, A. schwartzi, Brachyphylla cavernarum, Ardops nichollsi, and Sturnira paulsoni (frugivore); and Pteronotus fuscus, Micronycteris buriri, Molossus molossus, and Tadarida brasiliensis (insectivore). One species—Micronycteris buriri—and two subspecies—Sturnira paulsoni paulsoni and Ardops nichollsi vincentensis—are endemic to the island. Recent advancements in population genomics have led to the discovery of the reticulated evolutionary history of Artibeus schwartzi and it is likely that the formation of the hybrid evolutionary trajectory of this species is linked with classical island biogeography. The bat fauna of St. Vincent is unique in the West Indies, characterized by being a crossroads for species, an outpost for both northern and southern species, the boundary for a multi-island bat fauna as marked by Koopman’s Line, and a site of endemism. Based on our studies, we place the bat fauna of St. Vincent as the southern-most island in the Lesser Antillean Faunal Core

    Multi-Messenger Gravitational Wave Searches with Pulsar Timing Arrays: Application to 3C66B Using the NANOGrav 11-year Data Set

    Get PDF
    When galaxies merge, the supermassive black holes in their centers may form binaries and, during the process of merger, emit low-frequency gravitational radiation in the process. In this paper we consider the galaxy 3C66B, which was used as the target of the first multi-messenger search for gravitational waves. Due to the observed periodicities present in the photometric and astrometric data of the source of the source, it has been theorized to contain a supermassive black hole binary. Its apparent 1.05-year orbital period would place the gravitational wave emission directly in the pulsar timing band. Since the first pulsar timing array study of 3C66B, revised models of the source have been published, and timing array sensitivities and techniques have improved dramatically. With these advances, we further constrain the chirp mass of the potential supermassive black hole binary in 3C66B to less than (1.65±0.02)×109 M(1.65\pm0.02) \times 10^9~{M_\odot} using data from the NANOGrav 11-year data set. This upper limit provides a factor of 1.6 improvement over previous limits, and a factor of 4.3 over the first search done. Nevertheless, the most recent orbital model for the source is still consistent with our limit from pulsar timing array data. In addition, we are able to quantify the improvement made by the inclusion of source properties gleaned from electromagnetic data to `blind' pulsar timing array searches. With these methods, it is apparent that it is not necessary to obtain exact a priori knowledge of the period of a binary to gain meaningful astrophysical inferences.Comment: 14 pages, 6 figures. Accepted by Ap
    corecore