8,164 research outputs found
The conceptual design of a small solar probe /Sunblazer/
Conceptual design of Sunblazer space probe for determining electron density of solar coron
Understanding initial data for black hole collisions
Numerical relativity, applied to collisions of black holes, starts with
initial data for black holes already in each other's strong field. The initial
hypersurface data typically used for computation is based on mathematical
simplifying prescriptions, such as conformal flatness of the 3-geometry and
longitudinality of the extrinsic curvature. In the case of head on collisions
of equal mass holes, there is evidence that such prescriptions work reasonably
well, but it is not clear why, or whether this success is more generally valid.
Here we study these questions by considering the ``particle limit'' for head on
collisions of nonspinning holes. Einstein's equations are linearized in the
mass of the small hole, and described by a single gauge invariant spacetime
function psi, for each multipole. The resulting equations have been solved by
numerical evolution for collisions starting from various initial separations,
and the evolution is studied on a sequence of hypersurfaces. In particular, we
extract hypersurface data, that is psi and its time derivative, on surfaces of
constant background Schwarzschild time. These evolved data can then be compared
with ``prescribed'' data, evolved data can be replaced by prescribed data on
any hypersurface, and evolved further forward in time, a gauge invariant
measure of deviation from conformal flatness can be evaluated, etc. The main
findings of this study are: (i) For holes of unequal mass the use of prescribed
data on late hypersurfaces is not successful. (ii) The failure is likely due to
the inability of the prescribed data to represent the near field of the smaller
hole. (iii) The discrepancy in the extrinsic curvature is more important than
in the 3-geometry. (iv) The use of the more general conformally flat
longitudinal data does not notably improve this picture.Comment: 20 pages, REVTEX, 26 PS figures include
Founding quantum theory on the basis of consciousness
In the present work, quantum theory is founded on the framework of
consciousness, in contrast to earlier suggestions that consciousness might be
understood starting from quantum theory. The notion of streams of
consciousness, usually restricted to conscious beings, is extended to the
notion of a Universal/Global stream of conscious flow of ordered events. The
streams of conscious events which we experience constitute sub-streams of the
Universal stream. Our postulated ontological character of consciousness also
consists of an operator which acts on a state of potential consciousness to
create or modify the likelihoods for later events to occur and become part of
the Universal conscious flow. A generalized process of measurement-perception
is introduced, where the operation of consciousness brings into existence, from
a state of potentiality, the event in consciousness. This is mathematically
represented by (a) an operator acting on the state of potential-consciousness
before an actual event arises in consciousness and (b) the reflecting of the
result of this operation back onto the state of potential-consciousness for
comparison in order for the event to arise in consciousness. Beginning from our
postulated ontology that consciousness is primary and from the most elementary
conscious contents, such as perception of periodic change and motion, quantum
theory follows naturally as the description of the conscious experience.Comment: 41 pages, 3 figures. To be published in Foundations of Physics, Vol
36 (6) (June 2006), published online at
http://dx.doi.org/10.1007/s10701-006-9049-
Fermi systems with long scattering lengths
Ground state energies and superfluid gaps are calculated for degenerate Fermi
systems interacting via long attractive scattering lengths such as cold atomic
gases, neutron and nuclear matter. In the intermediate region of densities,
where the interparticle spacing is longer than the range of the
interaction but shorter than the scattering length, the superfluid gaps and the
energy per particle are found to be proportional to the Fermi energy and thus
differs from the dilute and high density limits. The attractive potential
increase linearly with the spin-isospin or hyperspin statistical factor such
that, e.g., symmetric nuclear matter undergoes spinodal decomposition and
collapses whereas neutron matter and Fermionic atomic gases with two hyperspin
states are mechanically stable in the intermediate density region. The regions
of spinodal instabilities in the resulting phase diagram are reduced and do not
prevent a superfluid transition.Comment: extended and revised version, 7 pages including new phase diagra
Firms' Main Market, Human Capital and Wages
Recent international trade literature emphasizes two features in characterizing the current patterns of trade: efficiency heterogeneity at the firm level and quality differentiation. This paper explores human capital and wage differences across firms in that context. We build a partial equilibrium model predicting that firms selling in more-remote markets employ higher human capital and pay higher wages to employees within each education group. The channel linking these variables is firms’ endogenous choice of quality. Predictions are tested using Spanish employer-employee matched data that classify firms according to four main destination markets: local, national, European Union, and rest of the World. Employees’ average education is increasing in the remoteness of firm’s main output market. Market–destination wage premia are large, increasing in the remoteness of the market, and increasing in individual education. These results suggest that increasing globalization may play a significant role in raising wage inequality within and across education groups
Corrections to scaling in 2--dimensional polymer statistics
Writing for the mean
square end--to--end length of a self--avoiding polymer chain of
links, we have calculated for the two--dimensional {\em continuum}
case from a new {\em finite} perturbation method based on the ground state of
Edwards self consistent solution which predicts the (exact) exponent.
This calculation yields . A finite size scaling analysis of data
generated for the continuum using a biased sampling Monte Carlo algorithm
supports this value, as does a re--analysis of exact data for two--dimensional
lattices.Comment: 10 pages of RevTex, 5 Postscript figures. Accepted for publication in
Phys. Rev. B. Brief Reports. Also submitted to J. Phys.
Scaled free energies, power-law potentials, strain pseudospins and quasi-universality for first-order structural transitions
We consider ferroelastic first-order phase transitions with
order-parameter strains entering Landau free energies as invariant polynomials,
that have structural-variant Landau minima. The total free energy
includes (seemingly innocuous) harmonic terms, in the {\it
non}-order-parameter strains. Four 3D transitions are considered,
tetragonal/orthorhombic, cubic/tetragonal, cubic/trigonal and
cubic/orthorhombic unit-cell distortions, with respectively, and 2; and and 6. Five 2D transitions are also considered, as
simpler examples. Following Barsch and Krumhansl, we scale the free energy to
absorb most material-dependent elastic coefficients into an overall prefactor,
by scaling in an overall elastic energy density; a dimensionless temperature
variable; and the spontaneous-strain magnitude at transition .
To leading order in the scaled Landau minima become
material-independent, in a kind of 'quasi-universality'. The scaled minima in
-dimensional order-parameter space, fall at the centre and at the
corners, of a transition-specific polyhedron inscribed in a sphere, whose
radius is unity at transition. The `polyhedra' for the four 3D transitions are
respectively, a line, a triangle, a tetrahedron, and a hexagon. We minimize the
terms harmonic in the non-order-parameter strains, by substituting
solutions of the 'no dislocation' St Venant compatibility constraints, and
explicitly obtain powerlaw anisotropic, order-parameter interactions, for all
transitions. In a reduced discrete-variable description, the competing minima
of the Landau free energies induce unit-magnitude pseudospin vectors, with values, pointing to the polyhedra corners and the (zero-value) center.Comment: submitted to PR
Thermodynamics of low dimensional spin-1/2 Heisenberg ferromagnets in an external magnetic field within Green function formalism
The thermodynamics of low dimensional spin-1/2 Heisenberg ferromagnets (HFM)
in an external magnetic field is investigated within a second-order two-time
Green function formalism in the wide temperature and field range. A crucial
point of the proposed scheme is a proper account of the analytical properties
for the approximate transverse commutator Green function obtained as a result
of the decoupling procedure. A good quantitative description of the correlation
functions, magnetization, susceptibility, and heat capacity of the HFM on a
chain, square and triangular lattices is found for both infinite and
finite-sized systems. The dependences of the thermodynamic functions of 2D HFM
on the cluster size are studied. The obtained results agree well with the
corresponding data found by Bethe ansatz, exact diagonalization, high
temperature series expansions, and quantum Monte Carlo simulations.Comment: 11 pages, 14 figure
Cost-Effective Use of Silver Dressings for the Treatment of Hard-to-Heal Chronic Venous Leg Ulcers
Aim
To estimate the cost-effectiveness of silver dressings using a health economic model based on time-to-wound-healing in hard-to-heal chronic venous leg ulcers (VLUs).
Background
Chronic venous ulceration affects 1–3% of the adult population and typically has a protracted course of healing, resulting in considerable costs to the healthcare system. The pathogenesis of VLUs includes excessive and prolonged inflammation which is often related to critical colonisation and early infection. The use of silver dressings to control this bioburden and improve wound healing rates remains controversial.
Methods
A decision tree was constructed to evaluate the cost-effectiveness of treatment with silver compared with non-silver dressings for four weeks in a primary care setting. The outcomes: ‘Healed ulcer’, ‘Healing ulcer’ or ‘No improvement’ were developed, reflecting the relative reduction in ulcer area from baseline to four weeks of treatment. A data set from a recent meta-analysis, based on four RCTs, was applied to the model.
Results
Treatment with silver dressings for an initial four weeks was found to give a total cost saving (£141.57) compared with treatment with non-silver dressings. In addition, patients treated with silver dressings had a faster wound closure compared with those who had been treated with non-silver dressings.
Conclusion
The use of silver dressings improves healing time and can lead to overall cost savings. These results can be used to guide healthcare decision makers in evaluating the economic aspects of treatment with silver dressings in hard-to-heal chronic VLUs
Quantum Gravity in Large Dimensions
Quantum gravity is investigated in the limit of a large number of space-time
dimensions, using as an ultraviolet regularization the simplicial lattice path
integral formulation. In the weak field limit the appropriate expansion
parameter is determined to be . For the case of a simplicial lattice dual
to a hypercube, the critical point is found at (with ) separating a weak coupling from a strong coupling phase, and with degenerate zero modes at . The strong coupling, large , phase is
then investigated by analyzing the general structure of the strong coupling
expansion in the large limit. Dominant contributions to the curvature
correlation functions are described by large closed random polygonal surfaces,
for which excluded volume effects can be neglected at large , and whose
geometry we argue can be approximated by unconstrained random surfaces in this
limit. In large dimensions the gravitational correlation length is then found
to behave as , implying for the universal
gravitational critical exponent the value at .Comment: 47 pages, 2 figure
- …