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We consider ferroelastic first-order phase transitions Wip » order-parameter strains entering Landau free
energies as invariant polynomials, that have structural-variant Landau minima. The total free energy in
cludes (seemingly innocuous) harmonic terms, inthe 6 — No p non-order-parameter strains. Four 3D tran-
sitions are considered, tetragonal/orthorhombic, ctetiggonal, cubic/trigonal and cubic/orthorhombic unit-
cell distortions, with respectivelyWopr = 1,2,3 and2; and Ny = 2, 3,4 and6. Five 2D transitions are also
considered, as simpler examples. Following Barsch and Kamsl, we scale the free energy to absorb most
material-dependent elastic coefficients into an overatfagmtor, by scaling in an overall elastic energy density;
a dimensionless temperature variable; and the spontarst@iis magnitude at transition << 1. To leading
order in\ the scaled Landau minima become material-independenkiidaof 'quasi-universality’. The scaled
minima in No p-dimensional order-parameter space, fall at the centreaaitite Ny corners, of a transition-
specific polyhedron inscribed in a sphere, whose radiusitg ahtransition. The ‘polyhedra’ for the four 3D
transitions are respectively, a line, a triangle, a tetlabie, and a hexagon. We minimize théerms harmonic
in the non-order-parameter strains, by substituting 8matof the 'no dislocation’ St Venant compatibility
constraints, and explicitly obtain powerlaw anisotrofcder-parameter interactions, for all transitions. In a
reduced discrete-variable description, the competingmarof the Landau free energies induce unit-magnitude
pseudospin vectors, witNy- + 1 values, pointing to the polyhedra corners and the (zeroeyalenter. The total
scaled free energies then becare, 11 clock-like pseudospin hamiltonians, with temperaturpeselent local
Landau terms, nearest-neighbor Ginzburg couplings, anepaw St Venant interactions that drive the elastic
domain-wall texturing. The scaled free energies can be imseglaxational or underdamped dynamic simula-
tions, to study ferroelastic strain textures and their dyical evolution pathways. The pseudospin models can
similarly be studied via local meanfield treatments, and td@@arlo simulations.

I. INTRODUCTION d(d + 1)/2 Cartesian strain-tensor components, whose lin-
ear combinations are the same number of physical strains,

Although first order phase transitions predominate in na®f which Nop are the order parameters. The Landau vari-
ture, second-order transitions have attracted much ttieare ational free energies are sums of high-order polynomial in-
attention, because of the taxonomically simplifying cquted ~ Variants in t_h(_e OP, with many material-specific anharmo_mc
‘universality classed’ Diverse materials in the same univer- elastic coefficien’, that take effort to extract from experi-
sality class have common critical exponent values as adcaldnents. With a single high temperature zero-strain state, an
temperaturd”/T, — 1, that depend only on the dimensional- Ny other structural variants apppearing as temperatureis low
ity d of coordinate space; the numhep » of order parameter ered, there_e}refv +1 degenerate_ La_ndau minima at thg first-
components; and the numb&¥, of degenerate energy min- Order transition temperature. Twinning, or spatial coexise
ima or ‘variants’. Spin models are prototypical, with= 2, pf competing structures s_eparated by oriented domain ,quls
Nop = 1, Ny = 2 for a 2D Ising model. The symmetry- 1S commor?E. The orientation comes frqm long-range elastic
breaking transition is signalled by spontaneous nonzezo av forces or powerlaw anisotropic interactioist’ between the
ages of a spin component, as one of the degenerate-minird%o P Order parameters, that are present but hidden, in the con-
variants in order paramete®P) space is picked out. First- Ventional displacement representation. As will be seezseh
order transitions by contrast, seem to be inherently medteri effective interaction’s, arise frorr_1 aonstrainedninimization
specific, as they lack a divergent length scale to induceasniv Of free energy harmonic terms in the= d(d +1)/2 — Nop
sality, by rendering irrelevant the finite-scale materaigme- ~Non-order-parameter strains, subject to St. Venant cabipat
ters. On the other hand, precisely because critical fluictost 'ty conditiong:°.
are unimportant, an approach focusing on free energy minima Barsch and Krumhansl (BKj have scaled the Landau free
is more reliable. If the free energies could be scaled to makenergy of a 2D square/rectangle transition, and the 3D cu-
at least these minima independent of the material coeffi&ien bic/tetragonal transition using three scaling parametera
one would have a kind of ‘quasi-universality’ for first-orde dimensionless form that is internally independent of @ast
transitions. coefficients. A conceptually important dimensionless temp

Ferroelastic, displacive structural transformatfohsas  ature variable (T') = (T —T.)/(Ty — T..) can be introduced,
in the austenite/martensite transition are (mostly) finst o that absorbs elastic coefficients of the quadratic term én th
der, symmetry lowering transitions, with the discrete sym-OP-strain magnitude. It is unity(7y) = 1 at the first order
metries of high/low temperature lattices often having atransition temperatur€ = Ty; while it vanishes (7..) = 0 at
group/subgroup relationship. Latticesdndimensions have the lower spinodal’.
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In this paper, we generalize this BK procedure for thethe models obtained here are explicitly induced by scalkesl fr
Landau free energies of four 3D and five 2D transitions,energies.
that can haveNop = 1,2,3 order parameters, amly = In Sec. Il we set up the general BK scaling procedure
2,3,4,6 variants, to absorb the (often unknown) materialfor 2D and 3D free energies. We then consider transitions
coefficient&”, into an overall energy prefactor. The folip in increasing number of variantyyyy, = 2,3,4,6. In Sec.

transitions are tetragonal to orthorhombic, cubic to tgira 1ll we consider two-variant, single order parameféy =
nal, cubic to trigonal; and cubic to orthorhombic, with thei 2, Nop = 1 cases, namely the 3D tetragonal/orthorhombic
number of unscaled material coefficients respectivély,, =  transition; and in 2D the square/rectangle or square/ rlusmb

3,3,4 and6. The 3D transitions we have chosen are rele-and rectangle/oblique-polygon transitions. Section IVi-co
vant for functional materials : tetragonal/ orthorhomhas (  siders cases witiNy, = 3 and Nop = 2, namely the 3D
for high-temperature superconductors such as YBCO); cueubic/ tetragonal, and 2D triangle/ centered- rectanglesir
bic/ tetragonal (as for shape memory alloys such as FePdjipns. Section V conside¥y, = 4 cases: the 3D cubic/ trig-
cubic/orthorhombic (as for ferroelectrics such B8770);  onal Nop = 3), and 2D square/ obliqué\pp = 2). Section
and cubic/trigonal (as for CMR oxides suchBsSrMn0O). VI presents theVy = 6, Nop = 2 case of 3D cubic/ or-
We show that, apart from the overall energy-density coeffithorhombic and 2D triangle/ oblique transitions. Sectidh V
cient, the scaled free energies evaluated atNhe+ 1 min-  obtains the reduced pseudospin hamiltonians, for all e tr
ima are material-independent in the first three 3D cases, argltions. Section VIII outlines possible simulation apprioes,
weakly dependent on a single material parameter in the eubiavhile the last Section IX is a summary. An overview in Table
orthorhombic case. The minima fall at the center and cornerkcollects the generic numbers of the scaled Landau free en-
of a transition-specific polyhedron inscribed in a sphefe, oergies, common to all materials with a given transition ie th
unit radius at transition. The ‘polyhedron’ fd¥op = 1,2  same quasi-universality class. The Appendix derives ctmpa
or 3 can be a line, a triangle, a hexagon or a tetrahedron. Wibility kernels for the four 3D and five 2D transitions consid
evaluate the St Venant compatibility potentials througkirth ered, through the direct substitution method, contritgutina
Nop x Nop matrix kernels, for all the nine transitions us- ’library of kernels’ for use in simulations.

ing a constraint substitution method, that is more direahth

a Lagrange multiplié# method. The scaled total free ener-

gies can be used in over-damped, or under-damped OP strain Il.  SCALING PROCEDURE

dynamics (that includes Langevin noise terms with powerlaw

anisotropic spatial correlatiod$):3 In a reduced, discrete-  Here (A) we define elastic variables, and (B) state the gen-
variable description that retains only the Landau minirha, t eral scaling procedure.

total scaled free energies induce cl&tkke ‘Zy,, 1’ hamil-

tonians in terms of unit-magnitudéy, p-dimensional vec-

tors, pointing taNVy + 1 values. The hamiltonians are bilinear A. Distortion and strains

in the pseudospins, with (temperature-dependent) quedrat

on-site contributions from the Landau term; nearest-riigh The distortion tens@rDW can be defined in terms of gradi-

ferromagnetic couplings from the Ginzburg term; and powerents of the displacement vect@{r) of points in a continuum
law anisotropic interaction potentials from the St Venantt.  medium, by

The pseudospin hamiltonians can be used for local meanfield

treatments, and Monte Carlo simulations, of ferroelastie t

tures. The models are also be relevant for complex fundtiona Dy (1) = Ouy,(7)/Ory, (2.1a)
materials, with lattice strains coupled to intracell clegrgpin
and orbitalé’.

In more detalil, the transition-specific scaling procedure i o
volves a choice of three scaling parameters: a typical spon- Dy (k) = tu(k)ky. (2.10)

taneous strain magnitudethat is small; a typical elastic en- The D tensor is a sumD = e + w of a symmetrized«)
ergy densityEy; and a (Landau) first-order transition temper- and antisymmetrized) distortion (or local rotation) tensor.
atureTy chosen such that the scaled BK temperature variablgyith 'T’ a transpose,

7(Ty) = 1, and the scaled OP magnitude is unity at transition.

The smallness ok << 1 justifies a finite-sum truncation of 1 1

the expansion in invariants; and a neglect of geometric non-  e(#) = -[D + D’]; w(7) = =[D — D7]. (2.2)
linearities inside the Lagrangian strains, as a perturgditist 2 2

approximation. Working to leading order Ny yields a ‘quasi-  We will refer to the symmetrized distortion tensgy, as the
universal’ scaled Landau term that has an overall, material'strain’ tensor, and take it as the working variable, istein
dependent energy densifyy, as mentioned. The total free representationltis distinct from the 'Lagrangian-straii,,,,,
energy has Ginzburg and St Venant terms that determine elaghat is a derived quanti®defined below.

tic domain-wall texturing, and carry (two) material-dedent In the nonuniform case, the six symmetrized distortions
coefficients. Elastic pseudospin models in the context ok, () cannotvary arbitrarily, if lattice integrity is to be main-
martensites have been considered by several gé#¢dpsut  tained (i.e. no defects such as dislocations). They aredink

whereu, v run overz, y, z; or in Fourier space,
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by the St. Venant's 'compatibility’ equatioh&’ of 1864 that  The physical Lagrangian-strains are similarly defined, so
ensure distorted unit cells fit together in a smoothly cotinpat

ble way. With a double-Curl operation defining an Incompat- Ey\(F) = C_l(Em + Eyy) = e1+ g1;
ibility or ‘Inc’ operation, in coordinate and Fourier spatiee 2
Cartesian-component constraintsegiv) are
. c
EQ(T) = ;(Emm - Eyy) = ez + g2;

Incle(P)] =V x (V x ()T = 0; (2.3a)

B . o E3(7) = c3Eyy = e3 + g3;  (2.50)
Incle(k)] =k x e(k) x k=0. (2.3b) ) _ ) N
where the physical geometric-nonlinearities agje =

(Similar equations hold fow(7), but for the transitions con- 5 (9ae + 9yy), 92 = F(9aw — Gyy), 93 = c39ay. FOr square
sidered here we take spontaneous local rotations to b zero.unit-cells in the high-temperature phase, the normalizing

From (2.1), in thedisplacement representatiovherei()  efficients are chosen as = v/2 = ¢,, andes = 1, while for
is the working variable, compatibility is satisfied as amidky ~ triangular unit cells:; = co = ¢3 = 1.
sinceCurl(Grad) = 0. Baus and Lovetf have proposed the For 3D cubic lattices with six Cartesian strain compo-
distortion tensoD be taken as the working variable, with the nents, the physical strains, with a = 1,2,..6 are the
St Venant compatibility equations then being field equationcompressionale), deviatoric ¢z, e3), and sheardy, es, eg)
constraints to be satisfied, rather than identities. In aated- ~ Symmetrized-distortions. These transform as one, two, and
magnetic analog¥ this is like working with the magnetic in- three dimensional irreducible representations of the cubi
duction rather than the vector potentid] with DivB = 0 Point group. For the cubic lattice, with(, Y, Z transform-
then a Maxwell field equation to be satisfied, rather than dnd as 3D Cartesian coordinates, the physical strains-trans
Div(Curl) = 0 identity. The change to a distortion-tensor form as ey ~ X? + Y2 4+ Z%,¢; ~ X? — Y?,e5 ~
variable is natural and useful, since the free energy dependX~ + V2 —27%es ~YZes ~ ZX,e5 ~ XY, and are
directly on the distortion; and the constrained minimiaati defined athio
in the distortion reveals powerlaw anisotropic potentials,
that are hidden in the more conventional displacement repre 1
sentation. €1 (F‘) = _(emm + Cyy + ezz);

The elastic free energy is invariant under global uniform V3
rotationg. Consider a line-element in the elastic medium, de-
scribed by a small imbedded column-veciat a siter”. Un- 1 1
der distortion of the medium, it locally stretches or rosdtza e2(7) = —=(eaa — €yy); €3(F) = —=(€ax + €yy — 2€22) ;

< _ V2 V6

vectorA(7) = [1+ D(7)]a. Free energies’ can depend only
onthe scalar produet()7.A(7) = @Z.[1 + D]T[1+D].d =
@’ [1+2E].@, whereA” g are row vectors. The free energy €a(T) = 2¢yz, e5(F) = 2ezz, €6(7) = 2¢4y.  (2.6a)

F(E,,) thus depends on components of the ‘Lagrangian- . . . - .
strain’ tensot E,,,,, that is a derived quantity, defined in terms The physical Lagrangian-strait, are similarly defined so

of the basic distortion variablB,,,, by e.9. B1 = (Bype + Eyy + E..)/V3 = e1 + g1 Whereg, =
(9w + Gyy + 922)/+/3, and so on.
For the tetragonal lattié&,

E(7) = ~[DT + D] + %DTD — o) +g(7), (24)

N =

e1(r) = %(em + €eyy);
where the ‘geometric nonlinearity’ i = %DTD.
It is convenient to considet(d + 1)/2 physicalstrainse,, X
that are linear combinations of théd+1) /2 Cartesian strains oo L B D
e, For 2D lattices, with three Cartesian components, they ea(r) = \/5(8“ eyy)i €s(7) = €zz. (2.60)
aree, with & = 1,2,3: the compressionak(), deviatoric
(e2), and sheare) strains. WithX,Y transforming as 2D and the physical shears are the same as (2.6a). These trans-
Cartesian coordinates, the physical strains transform as ~ form as irreducible representations of the tetragonal tpoin
X?4+Y?% ey~ X?2-Y? e3~ XY, and are defined & group.
As noted in the Appendix, the St Venant constraint (2.3b)
‘o o in Fourier space can be written in terms of the physicalissrai

e1(r) = E(GM + eyy); ea(r) = 5(611 — eyy); as

L c 0We, (k) =0, (2.7
es(7) = g(emy + eyz) = c3eqy. (2.5a) (k) (2.7)



where O&S)(E) are compatibility coefficients appropriate to B. General scaling and minimization procedure
the symmetry, labelled by shear componesits, 3 in 2D (one

Constraint), and = 4, 5, 6in 3D (three ConStraintS). This is We now follow a Barsch-Krumhansl procedéﬁ:e scal-
used in the Appendix to calculate the compatibility potelsti ing all Cartesian distortiond),, — AD,, of e,, —

The physical strains can be separated iNgp order pa-  \¢ ,, w,, — Aw,, in a typical value); scaling all energy
rameter strains labelled by = ¢ or {e,;}; andn = [3d(d +  termsinE, ; and defining a transition temperatufe These
1) — Nop] non-OP strains, labelled by = i or {e;}. (An  three parameters are chosen in terms of the material-specifi
associated separation of the physical Lagrangian-stfams elastic constants, to make the Landau free energy simpte. Th
each transition intq £, } and{E;} is also made.) For a fer- parameters have physical meanings: since scaled term§ are o
roelastic transition, the free ener@y = Fir + Fnon + F order unity, the overall prefactdt, is the elastic energy per
. The Landau part of the free enerdy (E,) can be writ-  ynit cell; the temperatur&, (> T%.) is the first-order transition
ten as a sum op-th order polynomial invariants in the OP temperature that pre-empts the second-order elasti¢aruns
Lagrangian-strains, that can be found by direct evalu&tidh  softening afr,; and\ is the spontaneous-strain magnitude at
for simple cases. The non-OP free enefgy,,(E;) is taken 7 since the scaled strain is chosen to be unity at transition.
as harmonic in the non-OP Lagrangian-strains. For simtplici  Since the physical distortions are linear combinationseft
we neglect symmetry-allowed anisotropic gradiét§ and  Cartesian distortions, they change:as— e, and the phys-
consjder only OP gradient-squared costs in the Ginzbung ter jcg| Lagrangian-strains change as
Fe(VEy). For all 2D transitions, an exhaustive evaluation of
the OP and OP-gradient invariants, and allowed OP/non-OP
couplings, was carried out through the program ISOTROPY Eo = AEo(N) = Mea +Aga).  (2.10)
of Stokes and Hatdf. _ _ o

Then with a sum or integral}( . — [ d%r/ao) over all Henceforthe,, is thescaledsymmetrized-distortion or scaled

positionsi*wherea is a lattice scale, the total variational free Strain. The (scaled) geometric nonlinearjty carries a pref-

energy in terms of free energy densitigs actorA. The free energy changes as
F = ZfL(EZ) + fG(ﬁEZ) + fron(E). (2.8) F(Ey) = FINE,(\)] = EoF[E,()\)], (2.11a)
v defining a dimensionlesB[E,(\)] = > f[Ea()\)] where

The Landau terny;, is not just an arbitrary Taylor series, but the scaled dimensionless free-energy densities are
is a finite-sum expansion in terms of symmetry-allowed, in- _ _ _ _
variant polynomials of physical OP Lagrangian-strains JIEa(N)] = FLIEN)]+ fa[VE(N)]+ fron [Ei(A)]. (2.110)

These terms contain dimensionless scaled coefficientalthat
fL=COML + Z 0,C P L (Ey). (2.9a) sorb the ‘external\ powers of (2.10) as

P=3,...Pmazx
— . — 1)\ 2 L2 2 2
The second order invariaiy = >, EzQ is common to all Cp = C(p))‘p/EO’ Ay = ADN /Eo; & = bA"Jag”Ey. (2.12)

tra_n_5|t|ons,(a)nd is separated out. The anharmonic elastic ©Here a dimensionless lengghhas a lattice constant, scale,
efficientsC'?) > 0 are temperature-independent, and=

+1, —1 are chosen signs, to gat, minima. We consider an from a§qbstitqtion as bglow in the Ginzburg tevm-» A/ao’_
elastic coefficienC’® (T) = (T — TC)CO(Q) that would par- whereA is a discrete-difference operator on a computational
tially soften to zero on cooling to a temperatdre= 7., but grid. .

is preempted by the first order transition. The Ginzburg and, A scaled temperatu%%r apsorbs the harmonic-term mate-
non-OP terms, with domain wall cost parameteand A()  ral dependence, and is defined as

elastic coefficien, are

(T) = (T-T.)CoPN JEy = (T—T.)/(To—T.), (2.13)

= — 1 1 L. . .
fa =Y b(VE(P)* faon = EA( VEZ(7). (2.9) where the transition temperatufg > 7, is determined by
¢ i requiringr(Ty) = (Tp — T.)Co'P A2 /Ey = 1 or

The temperature-dependence of sound veloéftiexperi-

mentally determine the linear slop{é)@), and the extrapo- To=T. + Eo/(00(2))\2)_ (2.14)

lated temperatur&,. The curvature of phonon spectrum at

long wavelength® determine, that is related to domain-wall At the first-order Landau transition temperature at a uni-
energy costs at short wavelengths. We take it to be positiveersal valuer(Ty) = 1, the nontrivial or ‘martensite’ wells

b > 0; but forb < 0, one can add phenomenologically a are degenerate with the trivial or ‘austenite’ well, whilgis
symmetry allowed positive-coefficient, fourth-order gead  the lower spinodal, where at a universal vat{é&..) = 0, the
term, for stability. metastable austenite well disappears. The upper spifiggdal
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where the martensite-variant wells disappear, turns cottal ~ the {z,} are Cartesian strains written as a column vector
have a universal value(T,,;,) = 7., for three of the four 3D such asz; = ey, x4 = 2e,.. In the cubic case, there
transitions. are three independent elastic constants in the \Voigt nota-
A constrained minimization of the scaled free energytion, Ci1,C12,Cus(= Cs5 = Cess). Writing Cartesian in
fIE+(N)] of (2.11b) with respect te,,, would, for general terms of physical strains, through (2.6a) and (A9), the en-
A, fix the parameters, £y, and yield an effective OP-OP in- ergy E is diagonalized, and a comparison with (2.9) yields
teraction potential. However because of geometric noatine C;; — C5 = C®? (T),C11 + 2C12 = AWM Oy = AW,
ties the calculation is involved, and we perturbativeljleste It is useful to introduce the elastic anisotropy parantéter
the scaling parameters and compatibility potentials, &se A(T) = 2C44/(C11 — C12), whereA > 1 (or A < 1) cor-

Corrections can in principle, be calculated. responds to greater stiffness in the body diagenalll >
We make a simplifying assumption that the typical sponta-directions (or cubic axis< 100 > directions). Strongly
neous distortion is small compared to unity anisotropic materials can have ~ 10. Then from (2.12),

the scaled shear coefficiedt, (= As = Ag), and the scaled
compression coefficientl; are both in terms of the elastic
AL, (2.15) anisotropy parametet(7' = Tj) at transition,

and for most materials this is indeed a few per cgént, 1072,
Then the scaled physical Lagrangian-straifig\) = e, + Ay = A(Ty); A1 =~A(To); v = [(C114+2C12)/Cay). (2.18d)
Mg are approximated by the scaled physical symmetrized-
distortions, The elastic constant ratip = A, /A4(= A1 /A5 = A1/As),
that enters the compatibility potentials, can for simpyici
be set in simulations to a constant, sdy")/24®) ~ 1
Ei(\) =~ Ei(0) = eg; E;(N\) ~ E;(0) = e;. (2.16) as in! FePd. [Forzy plane distortions, the shear term is
) o _ ) . (Ag/2)4e,,2, so from (2.5a) the scaled 2D shear coefficient
In fact, this approximation of dropping geometric nonliniea gppearing later is also proportional to the anisotropyaat-tr
ties in the Lagrangian-strains is commonly made without spesition.] Finally we note that from (2.12), the scaled Ginapu
cific comment. In the conventional (unscaled) displacemengoefficient is similarlyc? ~ (b/a2)A(Tp).
representation it is implicitly justified as a long-wavegém We now return to the main argument. A constrained min-
truncation: in Fourier space the strain tensorisgii(¢)],..  imization of the harmonic non-OP terms in (2.18c) as in
while the geometric nonlinearity ig... (¢) ~ [¢i(q)]?,,,. that  the Appendix yields the non-OP in terms of the OP strains,
is higher order iy — 0. Instead, in the (scaled) strain repre- . () — S, Biy(K)es(k) where theB;, coefficients are in
sentation, the neglect of geometric nonlinearities is seghe terms of the coefficientd,, ) of (2.7). Substituting back in

L;aadmgt; terrrt1_ |n”a small—p;acrjameter expansionjrihat could the harmonic termF,on[c;(c¢)] = Frompa:(ce) induces the
e systematically corrected. %t Venant term

~ The scaled free energy densities of (2.11b) then becom
flEa(N)] = f(eq), to leading order in\, separately for each

L ) 1068 ) ) o

distinct symmetry-invariant term, Frompat (1) = 5Al Z Uper(K)eg(k)ep (k). (2.19)
Flea) = frlee) + fa(Ber) + Fron(er), (2.17) R

From (2.9a), (2.9b), (2.12) and (2.13), The compatibility kerneld; Uzer (k) = 3=, A;Bie(k) B (k)

is evaluated for each transition in the Appendix, and isresse
tially dependent only on the wave-vector directignndepen-

frled) = (r=1) ZWQ + folee), (2.18a) dent of the magnitudé|. In coordinate space, the compati-
¢ bility potential is hence an anisotropic powerlaw with ddl
exponent equal to the dimensionaktyt-23U,,, (R) ~ 1/R°.
fole) = Z e + ZapCpIp(eg), (2.18b) (Write -the Fouﬁer int.egraJ ofjug(k)and change the yvave-
7 - vector integration variablg:| — |k|/R: the exponent simply

comes from the phase space dimension.)
A We focus on the Landau terify. To find the minima in OP
(e, — 2(Ke)?, foon(er) = Zip2 (2.18¢ space it is convenient to work in polar coordinates, follogvi
fa(Ver) ;5 (Aee)”, fuon(e:) Z 2 ( ) Toledano and Toledafio For example théVop = 2 dimen-
sional ‘vector’ in OP space 8= (¢ cos ¢, £ sin ¢), where the
Here as mentioned previously = (A,,A,,A.) has dis- ‘radial’ variable is
crete forward-difference operator components on a cubic
computational grid. — 211/2
We pause to relate the unscaled harmonic coefficigfits e=lel= [Z e’]'/%, (2:20)
of (2.9) to the material elastic constants. The elastic en- ¢
ergy i€® £ = %ZQ,B Cuoproxg Where witha = 1,2, ..6, and the Landau free energy density is

%



fL(@ = fule,d) = (1 — D2 + fole, ), (2.21)

where the transition-specifify is temperature independent.
We demand that the nontrivial Landau minima arerat=
1,2,..Ny equivalent points{e,,, ¢, }, with the same radii
em = € in OP space. The conditions are:

a.fL(Ema ¢m)

8fO (Ema (bm)
Oem +

=2(1 — ey, oe..

=0, (2.22q)

is material-independent; and finally (iNyeak with residual
material-dependence ify, (¢, ¢.,,), and hence in the OP mag-
nitude £(7) (that is however still unity at transition for all
materials). The tetragonal/orthorhombic and cubic/ tetra
onal; the cubic/trigonal ; and the cubic/orthorhombic tran
sitions (with unscaled material coefficients of respetyive
Nmat = 3,3,4 and 6), turn out to have quasi-universality
in f, of respectively the first, second and third kinds. Table
| summarizes the generic numbers for all transitions coensid
ered, with different materials with the same transitiottiriigl
into the same 'quasi-universality class’.

Going back to unscaled variables denoted by primes, the

locating the martensitic minima in the radial direction at aunscaled entropy-density difference relative to the anitste

temperature-dependent ¢, = £(7); and

8f_L(€m7 ¢m) _ 8fO(Ema ¢m)
O O

=0, (2.22b)

locating the minima in the azimuthal direction at a

temperature-independent= ¢,,. At transitiont = 1, we
also demand that the nonzero minima oN@p-dimensional

from the Landau term is; (T)) = —0f;(E'(7), ¢m)/OT.
Since the derivative of (2.22a) with respec€&t¢r) vanishes,
only the explicitr-dependence of;, contributes. The scaled
entropy-density difference is

50(1) = [(To — Te) / Eolsi' (1) = —5(7)2, (2.24)

and is (minus) unity at transition. Of course there are other

‘sphere’ of radius(r = 1) = 1, become degenerate with the free energy terms, and hysteresis from domain-wall testure

trivial minimum f7,(¢€ = 0) = 0. Hence

folem =1, ¢m) = 0. (2.22¢)

Above an upper spinodal = 7, the radial solutions(7)
become imaginary, and there is only the trivial austenite-mi

so this is just a formal result.We will consideroper fer-
roelastic transitions with free energy nonlinearities e t
OP strain driving the transition (without intracell shuéfje
with high/low temperature unit-cell symmetries having a
group/subgroup relationship; and without coupling to othe
fields. (There are also improper ferroelastics, with only ha
monic terms in strains, that are however coupled to othalfiel

imum. It is convenient for later use to define the Landau freesuch as electric polarization or magnetization, whoseinenl

energy at minima

FL(7) = JL(E ém) = (1) g1 (7), (2.22d)

whereg,, (7) changes sign at the Landau transition.

earities can induce a structural transifign

In Secs. IlI-V we consider scaling of the Landau free en-
ergy (and other terms), for four 3D transitions witthp =
1,2, 3 and for five 2D transitions witiNpo p = 1, 2, presented
in increasing number of varianfg,, = 2, 3,4, 6. Some cases
had been scaled earé#318 but are summarized here for

With 7 defined, we choose the remaining two scaling paompleteness. The final results for the minima are summa-

rameters\, Fy so the f, conditions of (2.22b), (2.22c) are

rized in Table I.

satisfied. It is useful from (2.21) to separate the angular de

pendence into a patk fy(e, ) = fole,d) — fole, &) that
vanishes in the minimum angular directions, so

fr(e, ) = [(r — 1)e? + fole, dm)] + Afole, ¢), (2.23a)

andz(7) is determined through minimization of only

fr(e, dm) = [(T — 1) + fole, dm)]. (2.23b)

There is always an overall material constdny for the
Landau energyf, = Eyfr, that absorbs unknown higher-

lll. TRANSITIONS WITH Ny =2

We consider one 3D transition and two 2D transitions, all
with Ny, = 2 low temperature variants and a single or-
der parameter (OP) componeNpp = 1, with the number
of non-OP variabless = 1d(d + 1) — Nop. The transi-
tions are: (a) tetragonal/orthorhombic in 3B = 5); and
(b) square/rectangle (that includes square/ rhombus)(@nd
rectangle-oblique cases (all= 2). See Figs 1 and 2.

order elastic coefficients, and can be treated as a fitting pa-

rameter. Since we work only to leading order \n any
material-independence found in the scalgdé) contribu-
tions is strictly speaking onlgiuastuniversal. Landau quasi-
universality can be of three kinds: @}rong i.e. the scaled
f1(e, ¢) is independent of material parameters for al;
(i) medium i.e. material coefficients appear only iuf,
that vanishes ab = ¢,,, so along minima anglegy, (¢, ¢.)

A. Tetragonal/orthorhombic case in 3D:
Ny =2,Nop=1,n=5

There are two deviatoric distortions, e3 in 3D, and the
single (Vop = 1) order parameter is, ~ X2 — Y2 that can
change a tetragonal square-cross-section to an orthoibomb
rectangular-cross-section. Since there are two possiitle s



rectangular elongations (along mutually perpendiculeedi  metastable martensite (or metastable austenite) minimtum a
tions), one expects two possible variants, as in Fig 2. Theéhe upper spinodal = 4/3 (or lower spinodat = 0).
tetragonal point group GR4/mmm with v = 16 elements Since f.[£(7)] is independent of material parameters, this
goes in a symmetry-lowering transition, to the orthorhambi is quasi-universality of the first kind, witf;, = E, f;, having
subgroup g £mmm with v, = 8 element&. The orthorhom-  only an overall material dependence through that absorbs
bic group describes symmetries of a unit cell with a paréicul the higher-order elastic constants.
rectangular orientation, corresponding to one variane el With the OP sign formally written as an angle; =
tio of the number of elements in a point group to that in ale|cos¢ where|ez| = |e|, and the minima are ap,, =
subgroup, or dimension of the cos&f g, is an integer, that 2(m — 1)7/Ny, withm = 1,2(= Ny ), wheresin 2¢,, = 0.
we assum@corresponds to the number of variants. Thus hereAt transition, the nontrivial Landau minima fall &y, = 2
there areNy = vg /v, = 16/8 = 2 variants, as expected. points at+1 on aline in theNop = 1 dimensional order pa-
The ratio of the number of (rotational) elements in the pointrameter space, as in Fig 3 and Table I. The number of distinct
group elements, has been taken to be the number of va&iantsnartensite/martensite domain walls between variant psirs
yielding the same resul/4 = 2 here, and in other cases. (See Ny = 1.
however, Section VI below.) Had we included an eighth order invariant C(®¢,8
For these two variants in a first order transition, we needn (3.2), the minimum condition would become— 2¢2 +
Up t0pmas = 6 even-order strain invarianfs. The unscaled 3e* + 4Cse® = 0. Here the new scaled coefficientd =
free energy, with sign choices, = —1,06 = +1is f = C®X/Ey = (C® /C(©)))\2. Assuming the ratio of eighth
CI, — 0W1, + C®) I4, wherel, = eoP are invariants, so  and sixth order unscaled constants is not too large, theishif
there areV,,,, = 3 material constants. With, — e, and  the roots arising fron€s ~ A\? < 1 is negligible. The ex-
C, = \?C"?) /E, as in (2.12), the scaled Landau free energytra eighth order invariant is thus “irrelevant’, in the serisat

densityf; = fr./FEois asin (2.21): the polyhedral minima remain essentially unchanged fjusti
ing the finite-sum restriction tp,,,,.. = 6 of the polynomial
_ ) expansion.
frle2) = (r = ez + folea),  (3.1) The scaled Ginzburg term iz = ¢2(Aey)?  There

aren = 5 non-OP strains, namely the compressign ~

X24Y?2; the other deviatoric straity, ~ X2+Y2—222: and

the three shears, e5, eg. Using the three compatibility con-
Folez) = €2 — Cyeld + CgeS.  (3.2) straints of (2.7) to eliminate the shears, and minimizingsin

the non-OP strains are determined by the OP. Substituting in
The conditions (2.22a), (2.22c) for degenerate minima aréhe harmonic non-OP terms yields an OP compatibility poten-
dfo/0e +2(r — 1)e = 0, andfy(1) = 0. This fixes the two  tial term as in (2.19)fnon(ei) = D1 5.456(Ai/2)ei” —
coefficients feompat(e2) where

where the temperature-independénis

Cy=2;Co=1, (3.3) Ay o

f_compat = 7 (E)|62(E)|2? (37)
achieved by choosing the two scaling parameters as B
and the kernel/ (k) is given in (A26) of the Appendix.

A= (CW20ON/2. By = O (W /203, (3.4)
B. Square/rectangle caseNy = 2, Nop =1,n =2
Thenf, becomes a perfect square, and
The single 2D deviatoric distortios, ~ X? — Y2 turns
frles) = (r—1)e2 +e3(e2 —1)%,  (3.5) a square to a rectangle. Since the rectangular elongation ca
be along two axes, one expects two variants, as in Fig 1. The
manifestly showing the triple-minima degeneracyfat= 0 point group G =p4mm for a square unit cell hasg = 4
for 7 = 1. The variant minima are atz(7) where the order elements, while the subgroup g for the rectangledsm
parameter magnitude with v, = 2 elements. Thus the number of variant®is
Ny = vg/v, = 2 as expected, and we again need up to
) 12 p_méw ): 6h0rder invfariants. (The)z sgaled Lanr(ilau free energy
N — fr(e2) is the same form as (3.5) above, so the minima are at
&) = {3[1 vl 37/4]} , (36) the sametz(r) of (3.6).
The scaled Ginzburg term i&; = £2(Aey)2. There are
n = 2 non-OP straing; ~ X2 +Y?, e3 ~ XY, and the har-
, . i . 2o monic free energy term ig,on(e;) = %2%173 Ayles (k)2
1)°. Barriers at5, () = {5[1 —vi- 37/4]} existin  This induces a compatibility kerdt3.15(/ (k) as in (A4) of
the range) < 7 < 7,, = 4/3. The barriers merge with the the Appendix.

is unity at transition. Here from (2.22d) the variable uszet
in pseudospin hamiltonians 5, /2 = g, = 7 — 1 + (82 —
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The square/rhombus transition hds, = 2, Nop = the Nop = 2 order parameters that are the two 3D devi-
1,n = 2, and the 2D shear physical distortiep ~ XY  atoric straing*18:28 with the vector in OP space chosen as
as the single order parameter. However this is not an indez = (e3, e3) ~ (\/LE{X2 +Y?% 222}, %{X2 - Y2},
pendent transitioR, sincee, andes interconvert through @ The cubic/tetragonal Landau free energy has been consid-
global rotation of Cartesian axes ly4. Nonetheless, as an ered by Barsch and Krumhansl and otR&# The invari-

exercise the symmetry group of the square is @mm with  ants{7,} under the cubic point group, up to a maximum or-

vg = 4 components, while the rhombus symmetry is g = P2der p,,,., = 4, arel, = e +¢3 = &%, I, = I3, and

with v, = 2 elements, sdVy = 2. The scaled Landau free 3 third-order invariantl; = e3 — 3eZes. This is explic-

energy isfz(e3), formally as in (3.5), ity seen to be a scalar under cubic-symmetries, as it can
be written with (2.6a) in terms of invariantsYY Z)? and

X114 Y14+ Z9 with ¢ = 2,4,6. From BK scalings as be-

frles) = (1 —1)ej +e3(e3 — 1)%,(3.8) fore, and sign choices; = —1,04 = +1 for three minima,
we havefr, = (1 —1)é% + fo(es, e2), where the temperature-
with two nonzero minima at the same valugs= +&(7). independenf, of (2.18a) is

The Ginzburg term isfg = ¢2(Aes)?. Then = 2
non-OP strains are now compressional and deviatericy

X2 4+ Y?ande, ~ X2 — Y2, with the harmoni&=23 7, . = fo =12 — C3l3 + Cyly, (4.1)
15 e 12 induci ) asi .
Se%:&i:xl’z Ailei[” inducing akernel/ (k) as in (AS5) of the Ap and the unscaled elastic constafitd), C*) are related to the
s " scaled ones as
There is another symmetry-allowed transifidk, namely
the square/centered rectangle. In addition to strain, #sein Cs = 0(3))\3/E0- Cy = 0(4))\4/E0 (4.2)
square/rectangle, it also involves a shuffle because ofghe ¢ ' o
ter site, so is not considered here. In polar coordinates in OP sp&cewith & = (e3,e) =

(cos ¢, sin ¢) of magnitude

C. Rectangle/oblique caseNy =2, Nop =1,n =2
e=1é] = [es? + e2?]V/2,  (4.3)
The shear physical distortiary changes a rectangle to an
oblique polygon, and is the singl€op = 1 order parame-
ter. The point group G p2mm with vg = 2 elements goes
to the subgroup g#2 with v, = 1 elements, so there are
Ny = 2 variants. Thef,(e3) Landau part is the same as the In — £3(cosd & — 3 in2 &) = £3 cos 36. (4.4
square/rhombus case of (3.8); howeventhe 2 non-OP con- 3= ¢"(cos” ¢ — 3cos@sin §) = " cos 3¢ (4.4)

tributions are harmonic in the combinations = (e1+e2)/2,  Then#, in the form of (2.23), with); = cos 3¢ is
as fron = e + 42, This yields a different compati-

bility kernef325n foppae = S1U (K)|es(k)[%, as in (AB).

the symmetry in OP space is manifestly carried by the third-
order invariant,

fO — 2 _ 0353 + 0484 + Afo; (45(1)
IV. TRANSITIONS WITH Ny =3 Afg = 0353(1 — 773). (45b)

We consider two transitions withVyy = 3 variants, and The angular dependence isdnfy ~ — cos3¢. The radial
Nop = 2 order parameter (OP) components, but with dif-minima and degeneracy conditions gnwith 73(¢,) = 1,
ferent numbers: of non-OP strains. They are the (a) cu- yield 2 — 3C3 + 4Cy = 0 and1l — C5 + Cy = 0, fixing the
bic/tetragonal transition in 3Dn( = 4); and (b) trian- two coefficients as
gle/centered rectangle in 22 & 1). See Figs 1 and 2.

C3 = 2; C4 = 1, (46)

A. 3D cubic/tetragonal case: : : ;
Nv = 3. Nop 292771 _4 achieved by choosing scaling parameters
There are three axes along which the cubic unit cell can X\ = ¢®) /20@; Ey = W (C® /204, (4.7)

elongate, to make a tetragonal cell, so one expects three var

ants, as in Fig 2.The cubic symmetry group @m3m with Thenfz (es, e2) and hence(7) is independent of material

v = 48 elements goes to the tetragonal groupB4&/mmm  constants, i.e. there is quasi-universality of the firstkifihe

with v, = 16 elements, so there &eVy = 3 variants, Ny = 3 variant minima offy (s, ¢) are at anglegs (¢,,) =

as expected. The variants are generated by joint action afs3¢,, = 1, and radiug,,, = &(7), where
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shear strains, with the OP vector chosergas (es,e3) ~
$(X? — Y2 XY). The triangle point group Gg6mm with

Sin3¢m = 0; ¢m = M, m=1,2,3(= Ny); (4.8) vg =6 glements goes to the centred rectangle subgro.up g=
Ny c2mm with v, = 2 elements, so there &feNy, = 3 vari-
ants, as expected. The third-order invariant undé¥ rota-
) 3 tions of the triangular lattice is nowl; = e3 — 3eqe3. For
E(r) = 1[1 +/1-287/9]. (4.9) (X,Y) = R(cosa,sina), one findsl; = (R?/8)cos6a,

manifestly invariant under the — « + /3 triangular sym-
Forr =1, &(r) = 1, as required, and the upper spinodal ismetry. The scaling parameter choices are as before. The fi-
universal,r = 7,, = 9/8. The saddle-point barriers are at nal scaled Landau free enetgys formally similar to the cu-

radiuss, () = 3[1 — /1 — 87/9], and anglegy,,, = (2m — bic/tetragonal case of (4.10a), with andes interchanged,
1)m/3. 2, 2 3 2 2, 2\2

)A/t transition the minima of the Landau free energy fall fo=h=2Is+ly = ezte;—2(ez—3eacy)Heptes)”. (4.11)
on the Nv + 1 = 4 vertices and center of a rightward- At transition theNy + 1 = 4 degenerate Landau minima
pointing equilateral triang!é2® inscribed in a unit circle in  again fall on the three vertices and at the center of an dquila
Nop = 2 dimensional OP space, with corners(at,e2) =  eral triangle inscribed in a unit circle. The maximum number
(1,0), (=1/2,++/3/2). (For a different sign choice; = +1,  of domain wall types isVyy, = 3.
the triangle merely changes direction.) See Fig 3 and Ta- The Ginzburg terms are the same as above, while the
ble I. The upper bound on the possible types of domain walcompatibility potential in 2D, is of course different. The

between pairs of variants &y = Ny!/[2I(Ny — 1)]] = singlen = 1 non-OP (compressional) strain ig =

Ny (Ny —1)/2 = 3. ~ — > 0—930¢er/O1 from the 2D compatibility constraint.
The scaled Landau free enerfly = (7 — 1)e2 + fo in OP  Substitution into the harmonic term as in (2.19) immediatel

components with the choice (4.6) is yieldst315 f = (A1/2)|e1(/5)|2 N fcompat(e%%) with a

2 x 2 compatibility-kernel matrix of (A2).

fo=1I —2I3+ I, = €3 + €5 — 2(e3 — 3eze3) + (€3 + €3)?
V. TRANSITIONSWITH Ny =4
= (1+2e3)(3e3 — €3 +2e3 — 1) + (€% — 1), (4.10a) _ o _ _ _
We consider two transitions witNy, = 4 variants, and dif-
where the second equatiSrexplicitly shows the fourfold de-  ferent order parameter (OP) components. They are the (a)

generate roots of;, = 0 at transition. cubic/trigonal case iBD ( Nop = 3, n = 3); and (b)
In polar coordinates as in (2.23), square/oblique case D (Nop = 2, n = 1). See Figs 1
and 2.

fr(e, ) =[(t — 1)e® +%(e — 1)?] + Afy, (4.100)

whereA fy = fo(e, @) — fole, dm) = 2(1 —n3)e® vanishesin
the angular directiong = ¢,,, of the minima. Asfy (¢, ¢) is The distortion acts along body diagonals of the cube and the

material-independent, there is again quasi-universafitie ., — 3 shears are the three components of the OP vector
first kind. Here from the definition of (2.22d);, =7 — 1+ 2= (¢, e5,e6) ~ (Y Z, ZX, XY). With the cubic group G =

A. Cubic/trigonal case: Ny =4, Nop =3,n =3

Chs 1)2-_ o . . Pm3m with vz = 48 going to the trigonal or rhombohedral
The Ginzburg term i = £?[(Ae3)® + (Ae2)?]. There  subgroup g =P31m with v, = 12, there aré Ny, = 4 shear-
aren = 4 non-OP compressional, and shear strains induced variants. The four invariants up to orgey,, = 4

e4, €5, €6, that can be written in terms of the OP strains, sogre], = el +e2 + et I3 = eqeseq; Iy = ef + et +ed; and
€; = ) y_9 3 Bices With i = 1,4,5,6. Substituting into the 1} = 1,%, with N,,,, = 4 material coefficients. The scaled
non-OP harmonic terms yields the cubic/ tetragonal paénti Landau free energy is

with the 2 x 2 matrix kernel of (2.19), given in (A23) of the

Appendix. The 3D relaxational OP strain simulati&hdid

not explicitly state the kernel, now given here for complete fo=( =1+ foles,es,¢6), (5.1a)
ness. where
B. Triangle/centred-rectangle caseNy = 3, Nop =2,n =1 fo=1I — C3I3 + 041122 + Cyly, (5.1b)

There are three ways to convert an equilateral to an isoscé:?l—nd the scaled parameters are related to unscaled ones by

les triangle, with the unit cell of the (equilateral) tridag
changing to a centered rectangle, so one expects three vari- c® A cw 0%

—\3 :
ants, as in Fig 1. The OP are 28y = 2 deviatoric and Cs=A Eo Gy = B, 1Ca=A By (5:2)




In spherical polar coordinates in OP space,
€= (eq,e5,66) = e(sinf cos ¢, sin O sin ¢, cos #), (5.3a)
with magnitude

e=|d

The invariants in OP space are then

= [ea? + €52 + e6?]Y/2. (5.3D)

I, =% I3 =&3sin? O cosfsin dcos d; I} = 4,

I = e*[sin” (cos ¢ + sin® ¢) + cos* 4]. (5.4)

Using trigonometric identitiesf is

fole,0,¢) = + Cle* — %53 sin 0 sin 26 sin 2¢

1 1
+C4e*1 — 3 sin? 26 — 5 sin? fsin? 2¢], (5.5)
and has three remaining material constarysCy, Cj, while
there are two scaling parameterst.

The radial minimund fo/0e + 2(7 — 1)e = 0, andT = 1
degeneracy conditiofy (s = 1, 0,,, ¢.,,) = 0 yield

Cs=6V3; Oy =1—C4/3, (5.6)

achieved by the choice of scaling parameters

(3) (3)
_ _O06Vs) g aCY
[C'@ 4 (C®/3)] 6v/3
The angular minimum condition®f,/0¢ = 0, and
0fo/06 = 0 yield minima atcos 2¢,,, = 0 or at
sin4¢,, =0, 3cos?f,, = (5.8a)
bm = (2m — 1) /Ny, m =1,2,3,4(= Ny). (5.8b)

For appropriate positive signs of the second derivativessgt
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have equal relative separations or polyhedral sides of e.g.
|1 — €3] = 21/2/3 e, and relative cosines of €§.¢3 /2, =
cosyp = —1/3, so the angle between vectors is the well-
known tetrahedral angl¢ = cos™1(—1/3) = 109°28'.

At transition, the Landau minima fall on the vertices and
center of a tetrahedron, inscribed in a sphere of unit radius
in Nop = 3 dimensional order parameter space, as in the
schematic points of Fig 3. The generic numbers for transitio
are in Table I. The maximum number of domain wall types
is Ny = 6. Of course in this and other cases, this is only an
upper bound, and energetic considerations might lead terfew
types actually appearing in the final microstructure.

Then the scaled Landau free energy in components is

fr = (1=1)L4-{I,—6V3I3+(1-C4/3) I2+Cy14}. (5.10a)

In polar coordinates as in (2.23), it is

fo=[1-1)*+*e -1+ Afo, (5.100)
manifestly showing the degeneracy at transition
fr(1,0,,6,) = 0. The angular partAf, =
f0(€7¢79) f (6 Qsm, m)

Afy = %5 [ﬁ — sin 0 sin 26 sin 2¢)]

2 1 1
+C484[§ — —sin? 26 — 5 sin® #sin? 2¢].

5 (5.11)

This carries material dependence throdgh but vanishes at
minima, sofz (¢, O.m, ) and hences(7) are still universal
for all 7 i.e. there is quasi-universality of the second kind.
Here from (2.22d)g;, = 7 — 14 (¢ — 1)2.

The material-independent OP magnitude at the tetrahedron
corners is

w

(5.12)

=—-[1++1-87/9

and happens to be the same form as for the cu-

bic/tetragonal transition, with the saddle-point barrar

éb( ) = 2[1 — /1 —87/9]. The Ginzburg term ig'c =
& us, G(Aeg) |. Then = 3 non-OP strains are the com-

1

are two points each on the northern and southern unit hempress|0na| ¢,) and the deviatoric straing4, es). The3 x 3

spheres in OP space,

G =1/4,57/4, O = 6;

bm = 37/4,T7)4, Oy =0+, (5.9)

wherecosd = 1/v/3. These four miniman = 1,2,3,4

compatibility kernelU (k ) k) of (2.19) is given in (A20).

B. Square/oblique case Ny =4, Nop =2,n=1

A square converts to an unequal-sided oblique polygon with
the deviatories, and sheaes order parameters acting simul-
taneously. Since each can distort the square in two ways, one

are at the ends of vectors in three-dimensional OP spacdexpects four variants, as in Fig 1. The harmonic parts are as-

€ = €n = em(sinby, cos g, sin Oy, sin ¢, cosb,,), that

sumed to soften at the sarfig (otherwise they would be two
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separate, unrelated transitions). The joint action of e t At transition, theNy = 4 variant minima fall on the ver-
order parameters is through their coupling. The squaret poirtices of a square inscribed in a unit circle Npp = 2 di-
group G=p4mm with vg = 4 goes to g =2 with v, = 1, mensional order parameter space. These are the only vari-
so there af® Ny, = 4 variants, as expected. The anharmonicants forC}, > 1, as the trivial roots on the axés,,e3) =
invariants are as in the square/rectangle ca§eg$ andes,  (££,0), (0,4#) are then unstable. The maximum possible
e$ or praz = 6 separately for each OP. We consider the sim-number of domain wall types &y, = Ny (Ny —1)/2 = 6.
plest case of equal elastic constants, and the simplestisgup  The Ginzburg term ig; = 52[(562)2 + (&33)2]_ There is
e2”e3. The scaled free energy terfpis: a singlen = 1 non-OP variable; as in the triangle-centered
rectangle case, so the compatibility kernel from the cosyre

s o 44 6 6 L o o sional harmonic terma? is the same as thie x 2 matrix Uy
Jo = (e3+e3)—Culexte3)+Cs(exte3)|—Chea"es”, (5.13) o (A2).

where the scaled and unscaled coefficients are relatéq by
CON/Ey; Co=CON/Ey: C) =" Yr\/E,.
Transforming to polar coordinates(es,es3) =
e(cos ¢, sin @), with o = cos2¢, and using trigonometric
identities, this becomes We consider two transitions wittVy, = 6 variants, and
Nop = 2 order parameters (OP), but with different numbers
n of non-OP strains. They are the (a) cubic/orthorhombic case
fo =to(e) +ta(e)n?, (5.14) in 3D (n = 4); and (b) triangle/center rectangle case in 2D
(n =1). See Figs 1 and 2.

VI. TRANSITIONSWITH Ny =6

where the coefficients are

4 6
to =€ — %(204 +Cy) + EZCG, (5.15a) A. Cubic/orthorhombic case Nv = 6, Nop = 2,n =4
For a cubic to orthorhombic distortion, the cross-sectiona
3 (20, — C4)et area perpendicular to each of three axes can be rectangular
by = ZCGEG - 1 (5.15b) in two ways, so one expects six variants, as in Fig 2. The

symmetry group G m3m with v¢ = 48 elements goes to
The angular dependence s ~ cos4¢. The degeneracy the orthorhombic group g mmm with v, = 8 elements,
condition, and the radial minimum condition at transition fi s Ny = 48/8 = 6, as expected. The variants are gener-
nally yield Cy + C}/2 = 4; Cs = 4, achieved through the ated by combined action of th&op = 2 order parameter
choice components that are the two 3D deviatoric strains, with the
vector in OP space chosen as in the cubic/ tetragonal case,

€= (ez,e2) ~ (e { X2+ V2 =227}, ={X? - Y?}).
22 = (CW 4+ 'Y )2)/0®); By = A\°C® /4. (5.16) The cubic/ortﬁorhombic free ener\ggl in Cartesian strains
. ) has been considered for fitting to FePd experimertigre
The angular minima are gt (¢,,,)” = 1 or however, we work with physical strains. The previous cu-
bic/tetragonal case of (4.1), with a third order invariant=
2m — 1) es? — 3eses?, yielded three minima alternating with three
sind¢,, = 0; ¢, = ————, m =1,2,3,4(= Ny). (5.17) maxima, on the unit circle. For six minima on the unit cir-
Nv cle, a sixth order invariant = I3 will be the leading angular
Then the scaled free energy in OP components is term.

We consider two cases, with up to sixth order, and up to
. eighth order invariants. For invariants of uppg,.. = 6th
R (O (A et L A(eB 48— en2eq?. (5.18 order, the free energy has,,.. = 4 material coefficients.
fo=et 2 leara)tlara)-Cetes (15 fo= (1 =1)(e3 + €3) + foles, e2) wherefy is
In polar coordinates as in (2.23),
fo=1I— CuI3 — Cols + C4I3, (6.1a)
r — _ 1 2 202 1 2 A )
fu=I Je +et(e V1+4f with signsoy = 0 = —1, 0 = +1. For materials with other
coefficient signs, we are forced to go to highgy,. = 8th or-
Afo = (362 — 2+ C}/2) cos® 2¢, (5.18b) der, and the additional invariants dke= 1215, I} = I3. (The
- odd invariantsls, Is = I3y, I; = I5I> give sign-varying
so the quasi-universality is of the second kind, witHe, ¢,,,) contributions to derivative8 f,/d¢ at different minima that
and &(7) of (3.6), both independent of material constants.should be equivalent, so we set their coefficients to zenm fro
Heregr, =7 — 1+ (82 - 1)% the start.)



The scaled free energy up to eighth order, with ., = 6
material coefficients is

fo =1 — CuI3 + Cols — C{I3 — Cglg + CLI5. (6.1b)

It is convenient to defing’s(™) = C{ — Cg, O
C{ — Cs. Transforming to polar coordinateS= (es, e2)
e(cos ¢,sin¢) we getl; = £2cos3¢ as before, sd
eSn2, Iy = %13 wherenz = cos 3¢.

Collecting terms, the sixth and eighth order cases of (6.1a1

and (6.1b) can both be written as
fo=to(e) +te(e)(1 —13), (6.2)
where from (6.1a)
to=¢e% — Cue* + 06(7)56; te = Coe’; (6.3a)
while from (6.1b),
to = e2—Cue? =8 +Cs (T8 tg = Cge®—Cpeb. (6.3b)

In both cases, the angular dependencf is — cos 6¢.
For the sixth order case of (6.3a), the degeneriaty =
1,¢ = ¢,,) = 0 and radial minimum conditiod f,/0¢ +

2(r — 1)e = 0 determine two of the constants &g~ =

1,C4 = 2. The scaling parameters for these values are, with!

unscaled elastic-coefficient ratio= C'4) /(C"®) — C(©),

AN =a/2, Ey=XCW/2. (6.4)

Then the angular contributions clearly yield,/0¢ = 0
roots at

2(m — 1w
Ny

sin 6¢y, = 0; dpm, , m=1,..6(= Ny). (6.5)

wherens(¢n)* = 1.
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are manifestly degenerate with austeniteg’aél, ¢,,) = 0 at
transition.

For the eighth order case of (6.3b), there are three mate-
rial constantCy, Cs ™), Cs(™) in fr(e,ém), and only two
remaining scaling parameteks Ey. The degeneracy and ra-
dial minimum condition now determine two of the constants
as CG(’) = 3 — 204,08(*) = 2 — (4. The equivalent
condition3Cs ™) — 2C(7) — ¢y = 0, yields with (2.12),

a quadratic,3\* — 2yA? — o, wherea is as above and
= ("9 — c©) /('™ — ¢®). The positivity of sec-
nd derivatives requires thék > Cs and2 — Cy > 0 while
A2 > 0 below, further require8 — 2C; > 0.

HoweverA(« 1) can also be obtained from the relation
between scaled and unscaled coefficients (2.12)\%as=
a(3—=2C4)/Cy =v(2—-C4)/(3—2C4). Demanding consis-
tency yields\, Ey, Cy in terms of the unscaled elastic coeffi-
cients, but her€’, is no longer just a universal number. The
scaling parameters are then

A= (y/3)[1+{1+3a/y}?); Ey=CWA/Cy; (6.80)

Ci = (3/2)/[1+ (v/6a)(1 + {1+ 3a/7}'/*)]. (6.80)
As elastic constants vary, the constéhf«/~) movesin a
arrow rangsg/2 > Cy > 0,e.9.Cy = 1fora/y = 1.

The scaled free energy in OP components for the eighth
order case from (6.3b) is then

fo=( =D+ L(I, —1)*{1+(2-Cy I}

+(Csly — Cg)(I2° — I3%). (6.9)

In polar coordinates as in (2.23),

fo=1r =1+ = D1+ (2 - Cu)e®} + Afo,

The scaled free energy in components in OP space is, with

the above scaled coefficients,

Fo = (1 — DI+ (I, — 1)* + Cs(L* — I5%). (6.6)

In polar coordinates as in (2.23),

fo=[(r =1+ - 1)%] + Afo,

Afo= %CGEG(1 —cos6¢), (6.7)

The last termA f, vanishes at the six minimal directions,
where the material constaf is eliminated, so there is quasi-
universality of the second kind. The OP magnitude) is

Afo = %(0858 — C6e%)(1 — cos6¢). (6.10)

with Cg, Cg eliminated at minimal angular directions.
The rootz(7) is the solution of a cubic

4(2—Cy) X343(5-204) X3 42(3—C) X +(1—1) = 0, (6.11)

whereX =22 -1 > 0. At 7 = 1, the required root i{ = 0,
and just below transition is lineaX ~ (1 — 7)/2(3 — Cy).
Close to zero temperature, with= —|r| and for|r(T =
0)| = T./(To — T.) >> 1, one hasX ~ [|7]/4(2 — Cy)]/5.
Thus the scaling procedure carries through even for theleigh
order case, but there is now quasi-universality of the third
kind, with a weak residual material-dependence thratigh

At transition and for both cases, thé, = 6 nontrivial
Landau minima fall on the vertices of a hexagarscribed in

as in the tetragonal/orthorhombic case of (3.6). The vé&sian a unit sphere inNpop = 2 order-parameter space as in Fig.
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3 and Table I. The upper bound on the number of possiblez?(7)E, /ksT, and the hamiltonian is diagonal in Fourier
martensite-martensite domain wall typedig: = Ny (Ny — space,
1)/2 = 15, although as mentioned, not all of these may be
seen, for energetic reasons.
The Ginzburg term, and the compatibility potential from BH = EZQo(E)IS(E)IQ; (7.2a)
then = 4 non-OP harmonic term is the same as in the cu- 2 Z
bic/tetragonal case of (A23) of the Appendix.

B. Triangle/oblique caseNy = 6, Nop = 2,n = 1 QO(E) = Dolgr(T) + EK?+ %U(E)] (7.2b)

The two order parameter components are the single deviddere on a grid of unit lattice constank’,, = 2sin(k,/2),
toric and single shear strains= (e, e3) = e(cos ¢, sin¢).  with 4 = x,y. This hamiltonian has been studied in a lo-
The triangle point group G g6mm with v = 6 goes to the  cal meanfield approximation, under a cooling ramp obtaining
subgroup g 2 with v, = 2 so there al® Ny = vg /v, = 6 glassy domain-wall textures, dependent on cooling rate and
variants. (The ratio of the numbers of rotational elementsnitial conditiong2.
would however give/1 = 3 variants.) For Nop > 1, Ny > 2 transitions wedo notsimply get a

The scaled Landau free energy den'sitig formally simi-  generalized spig-model with2; + 1 states on a line, where
lar to the cubic/orthorhombic case of (6.7). At transitibet j = Ny /2. Instead we obtain clock-like modédswith dis-
Ny + 1 = 6 + 1 degenerate Landau minima again fall on creteS vector variables pointing t&/; + 1 corners and centre
the six vertices and at the center of a hexagon inscribed in &f a polyhedron inV, p-dimensional space, as denoted by ar-
unit circle, as in Fig 2. The maximum number of domain wall rows in Fig. 3. Since the zero state is included, these may be
types isNw = 15, but not all may finally appear. termed ‘clock-zeroZy,, 1 models. Note that, unlike pure

The Ginzburg term, anq the cqmpatibility potgntial frgm clock Zy models, the spin square—magnituﬁé(?) is still
then = 1 non-OP harmonic term is the same as in the triany statistical variable and not a constant, because of tie zer
gle/centered rectangle case of (A2). states. Choosing/lop = 2,3 component strains only at the

minima induces vector pseudospins in OP space,

VIl. PSEUDOSPIN HAMILTONIANS
(@) — eS(7). (7.3)
The idea of using discrete-variable pseudospins to approx-
imate continuous-variable distortions on a lattice was- proThe variant angular dependenfg ~ — cos Ny ¢ generates
posed earligf2,, and has been pursi@&®. We had sug- the clock-variable directions.
gested obtaining pseudospin hamiltonians for variousstran  The general temperature-dependent pseudospin hamilto-
tions by substituting the order parameter (OP) values at th@jan is
polar coordinate Landau minima, into the total scaled free
energy#?. The Nop = 1 case for the square/rectangle case
asex () — £5(r), where the three minima induce a spin-1 H(S,(7)) = F(eg — £Sy). (7.4)
modelS = 0, +1, —1 with three values on a line, of a single-
component pseudospin. With® = S* = $? = 1 0or0, Asin the square/rectangle case, the radial part of the Landa
the nonlinearities in the Landau free energy collapsgte+  term with OP nonlinearities, collapses to a quadratic in the
£(1)%gL(7)S? wheregy (1) = 7— 1+ (82— 1)? changes sign  pseudospin magnitude, sinegh powers of the spin-vector
at transition. The Ginzburg and compatibility terms are@als magnitudd§|" = |§*|2 =0,1.
written in terms of pseudospins. This yields a temperature- Although in zero stress the uniform state is no longer a Lan-
dependent pseudospin hamiltonidi(S) = F(e; — £S) that  dau minimum below the lower spinodBl, there is a possibil-
is like a generalized Blume-Capel spin-1 mddeThe hamil- ity that nonuniform textures exert local internal stressef-
tonian has a temperature-dependent quadratic term, astieareyor the zero value at a site even at low temperatures. Also, th
neighbor ferromagnetic term, and a PLA compatibility t8tm  original free energy in OP strain always has a turning pdint a
the origin to support dynamical transient zeros, that ai¢fo
Dy ) 9, % ena few in number, could play a catalytic role in microstructura
BH(S) = T[Z{QLS (7) + & (AS)"} evolutior?®. Hence we retain zero spin values at all temper-
a atures, allowing their permanent/transient existencestdds
termined dynamically.

4 Z %U(F— M)S(HS)], (7.1) The hamiltonian in coordinate space is
with gradient V realized as difference operator on BH = &[Z{QL(T)Sg(F)Q+§2(£Sg)2}
a computational grid, as mentioned. Hefy(T) = 2 Y.
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+ ¥ %UM (7 = 7)Se(7)Se (7], (7.5a) VIIl.  SIMULATIONS OF STRAIN TEXTURES
700
. Spatially varying strain textures in ferroelastics can be n
and is transition-specific through the values, the temper- merically simulated in continuous strains by free energy re
ature dependence g@f,(7), and the compatibility potential. laxations, or by discrete-strain pseudospin hamiltonians
Note that the anisotropic tern$§7). U (7—r").5() are from
compatibility anisotropies in OP space, and differ from mod

els with electric dipoles that have anisotropies relative to co- A. Scaled free energy relaxations

ordinate space ax&s{d(7).#}{d(7).7'} /|7 — |, (although

the powerlaw fall-offs with exponemt, are the same). Of course, there has been much simulation work in the dis-
The hamiltonian is diagonal in Fourier space, placement representation or with phase fi#ldsnd one com-

mon problem is the choice of the many,,.; material coef-
1 oL . ficients, that require fitting to experiment for each matéria
BH = 3 Z Z Qo0 (k)Se(k)Se (k)*; (7.6a) With scaled free energy strain dynamics or with pseudospin
PN hamiltonians, the material-dependence is essentialiyi-€li
nated or reduced, to group many materials with the same
. ~ A . structural transition in the same quasi-universalitysld$us
Qo,eer (k) = Dol{gr(r) + EK>}o00 + TUM’(/C)]. (7.6b)  one does not have to explore the full many-parameter space
of N,..: unscaled coefficients, and simulations by different
Transitions with free energy quasi-universality of thetfasd  groups can be more easily compared.
second kind, have reduced pseudospin hamiltoniansumith Local equilibrium microstructures can be found from

versalcoefficientsy;, of the on-site term. Apart from the over- rglaxational dynamics of unscaled order parameter (OP)
all Ey, the material-dependence is only through the texturestrains,{e,(r, )} and the unscaled free energiek:, /0t =
inducing Ginzburg and St Venant terms. B —T©3F/de}, wherel'(© is a kinetic constant of dimension
For two-component OP cases in additionfo= 0, the  inverse-energy time. Scaling straing;, = \e; and energies
pseudospin is5 = (cos ¢, sin ¢, ), Wherem takes onNy  F = EyF, whereF = Ff, + Fg + Foompat, We oObtain a char-
values. Thus for the three variants of the cubic/tetragonaicteristic decay raté, = I Ey/ 2. Then with a dimen-
and triangle/center-rectangle transition, there areettva-  sjonless timg = 'yt absorbingFy, a scaled dimensionless
ues¢,, = 0,27/3,47/3 on corners of a triangle, ang, = dynamics is obtained,
7—1+(—1)? wherez(7) is from (4.9). The four spin vectors
areS = (0,0), (1,0), (=3, +2). _
For the square/oblique transition there are four values a_e_f — _BF(‘?@)_ (8.1)
¢m = m/4,37/4,57 /4,77 /4 on corners of a square, and ot Dey
gr = 7 — 1+ (82 — 1)2, with &(7) of (3.6). The five spin o
vectors arg0, 0), (i%, i%, _%), The underdamped dynamiésould be similarly scaled to

1
E)’( V2 P uasi-universal, dimensionless form
For the three-component OP of the cubic/trigonal tran ' '

sition, the pseudospin vectors ar®n-planar as S =
(sin @y, cos ¢y, sin O, sin ¢y, cos b,,,), where 6, ¢, take
on four values of (5.8) at the corners of a tetrahedron. The
coefficientg, = 7 — 1 + (¢ — 1)2, with £(7) the same as
the cubic/tetragonal case of (4.9). The five spin vectors are Microstructures can be studied using pseudospin hamilto-
(0,0,0), (i%, i%, %), (i%, HF%, _ %)_ nians, by sollvmg self-consistency equations from locehme
For the two-component OP and six variants of the cufield approximations and by Monte Carlo spin simulat@ns
bic/orthorhombic and triangle/oblique transitiong,, =
0,7/6,27/6, ..., 57 /6 on the six corners of a hexagon, and the
seven spin vectors ar®, 0), (+1,0), (4, +¥3), (—1,+¥3),
where for thep,,.. = 6 casegr(7) =7 — 1+ (62 —1)%is o _ o
universal, and(7) as in (3.6). For the,,., = 8 case, with The completely unifornk = (lmeanﬂeld contribution to
quasi-universality of the third kind, there is a weak materi the hamiltonianis? ~ f.(7)S?(k = 0), as the Ginzburg and
dependence through, = 7 — 1+ (£2 — 1)2[1+£2(2—(C,)]  compatibility terms vanish. Thus g = &%g;, changes sign
with 3/2 > C4 > 0, and&(7) as in (6.11). at transition, we have < 82 >= 0 above the transition,
The pseudospin reduced hamiltonians here are not justwrignd < 52 >= 1 below the transition, faithfully reproduc-
ten down, but are induced from the scaled free energy, thdeg the displacive transition of the original strain vaitih,
encodes the specific symmetry, nonlinearity, and compatibi Strain textures withk # 0, can be captured blpcal mean-
ity of each ferroelastic transition: a continuum-variamlate-  field o,(7) = < S¢(¥) > approximations in both coordinate
rials science model is mapped to a discrete-variable statis and Fourier space. Each spin sees a local meanfield, and there
mechanics hamiltonian. is a subtraction for consistency of averages'S >~ oo

B. Pseudospin simulations

1. Local meanfield
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(i) The trial energyH,,.;.; (diagonal in Fourier space as
in (7.6b)) is then evaluated. The energy differedkd =
Se(7)Ser (7)) = Se(F)oe (7)) + a¢(7)Ser (7) Hiriat — Hinpur between configurations in the Boltzmann-
factor e #2H determines the accepted configuration. The
, cycle then repeats.
—o(Mow () (8.2a) TheN sites are labelled with random numbers and arranged
in an increasing-value chain, so sequentially visitingge#e
in the chain means every site is visited randomly, but onde an

Se(k)Se (k)" = Se(k)ou (k)" + ou(k)Se (k)* only once, in 1 MC sweep, that then corresponds to 1 MC step

per spin.
—oo(K)op (k)*. (8.2b)
This is equivalent to substituting = o + 6.5 into the hamil- IX. SUMMARY
tonian, and linearizing inS = S — o.
The meanfield hamiltonian is then, Generalizing a procedure due to Barsch and Krumhansl, we

have shown that ferroelastic free energies can be scaldd in d
. . mensionless form, defining a quasi-universality class for a
BHyr = Z Qo(7)Se(7) = Z Qu(k)*Se(k), (8.3) materials with the same group/subgroup structural triamsit
0,7 s Whereas unscaled free energies with fitted coefficients are
specific to the fitted materiglthe scaled dimensionless free
where an additive constant} > Q.(7)o,(7) on the rightis  energies are in a form relevant for all materials with thesam
suppressed. Her@,(r) = Ze/,;/ Qoo (T — 7)ow (), or  ferroelastic transition. A simplifying approximation vksrto
Qu(F) = 3, Qo.cer (F)ow (). The same results are obtained leading order in the (unscaled) spontaneous- strain madgmit

- L . _ S at transition\, that is typically a few percent. To this order, the
from ak # 0 variational apE)roacth the weighigk), mini- scaled Landau free energy minima turn out in most cases to be

mizing Trace(Hp) =3, p(k) In p(k), that has averages such material-independent, depending only on the dimensitynali
asoy(k) = Trace{p(k)S(k)}. d, number of order parameter componeMgp; and num-
The self-consistency condition for the local, nonuniformber of low-temperature structural variamtg,. The minima
meanfield is then in order-parameter space fall on the corners of ‘polyhedra’
inscribed in ‘spheres’ inNpp dimensions, with radius the
scaled order parameter magnitude, that is unity at tramsiti
o¢(r) = Z Se(ﬁe’ﬁHMF/[Z e PHME) (8.4). The scaled variational free energies in terms of the locgier
Se Se parameter strain components, have Landau, Ginzburg, and St
Venant powerlaw anisotropic interactions, and can be used i
For tr;eNOP =1, Nv + 1 = 3 square/rectangle case, one rg|axational or underdamped dynamic simulations. The com-
obtaing? patibility kernels are calculated for all transitions ciolesed,
using a constraint-substitution method.
. . The polyhedral arrangement of minima in the strain vari-
o(r) = —2sinh Q(r)/[1 + 2 cosh Q(7)]. (8.5). ables irl?]m)(/adiately sugggests a reduced description witmstra
free energies inducing ‘clock-zero’ models, witNop-
dimensional discrete pseudospin vectors at each sitet-poin
ing to Ny + 1 possible states. The discrete-variable pseu-
dospins in local meanfield and Monte Carlo simulations
Metropolis algorithms for nearest-neighbor Ising modelscan be show# to reproduce previous textures obtained in
with spin componentd/op = 1 and valuesVy = 2, are pro-  continuous-variable dynamigs14.28
totypical. The Monte Carlo method can be applied to spins of Fyrther work could include pseudospin clock-zero simula-
Nop = 1,2,3 components, withlVy + 1 = 3,4,5,7values  tions of more of the transitions considered here; the aufuliti
and powerlaw anisotropic interactions. Fast Fourier Transgy quenched disorder; a determinafidhof the scaled free
forms (FFT) are used to easily treat the full PLA compatibil- energies and compatibility kernels for more of the 94 pdssib
ity potentials; this is preferable to attempting an uncolied  ferroelastic transitiofs scaling of experimental results for
truncation of the 1/R? interactions to some arbitrarily far- different materials to explore data clustering; and siriga

neighbor interaction, while staying only in coordinate@pa  complex oxide models, through couplings of strains to other
The procedure is: field<l?.

(i) Flips of an input spin configuration with an input energy

Hinpur are made on the lattice in coordinate space, with équal This work was supported in part by the U.S. Department of
probability overall Ny + 1 values at a site, yielding a trial gnergy, and by ICTP, Trieste.

new configuratio S(7)}.
(i) An FFT gives the Fourier spadgs(k)}.

2. Monte Carlo simulations
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average< U(R) >~ U(k = 0) ~ v(k = 0) = 0,
rather than a divergence as for isotropic potentials
<U(R) >~ > 51/R*~InN.
X. APPENDIX: ST VENANT COMPATIBILITY KERNELS
FOR FERROELASTIC TRANSITIONS

We derive in this Appendix, the Fourier space compatibil- A. 2D transitions
ity kernels, for increasing numbersof non-order parameter
strains:n = 1,2 for 2D transitions, and: = 3,4, 5 for 3D In 2D, the Fourier constraint of (2.3b) in terms of Cartesian
transitions. distortions is2k, kye.y — ky ers — ku’eyy = 0. In terms of

lowing.  Kartha et af performed Monte Carlo simu- pecomes the single compatibility constraint as in (2.7),
lations in the displacement-vector representation, using

square/rectangle variational free enen@Wﬁ) that, in ad-

dition to a Landau term nonlinear in the order parameters O1e1 + Ozea + Ozes = 0. (A1)

(OP), also included harmonic terms in compression and shear

~ (Vyug + Vyuy)? and~ (Vyu, + Vyuy)? They found For the square lattice, the compatibility coefficients are
diagonal domain walls. To understand the orientation, they), (k) = _%]}'2,02(12) = +\/i§(km2 — k,2),03(k) =

followed Baus and Love® and went over to the strain rep- . . S S
resentation, analytically minimizing these non-OR; 2, e32 2kgky, while for the triangular case (k) = —k*, Oa(k) =

terms subject to the St Venant constraint using Lagrange mu(kﬂq2 — k,*), Os(k) = 2kyky. In the displacement represen-

tipliers. The resultant square/ rectangle compatibilgyriel ~ tation, fora 2D square Iatt|_ce there are two mdependemt_var

explained ther /4 orientation preference. However, strain- ables(u,u,) per lattice point (or per unit cell). In the equiv-

representation simulations in the QR, for a free energy &l€nt (Symmetric) strain representation, there are thigsp

F(e,) that explicitly included the St Venant term, were not ICal Strainses, ez, ¢; and one constraint, so there are again

pursued. This changeover to the OP-strain working varis — 1 = 2 independent variables. We now derive compatibil-

able was done in relaxational simulatiéfyielding the same ity k_ernels for transitions with increasing numbers of OR-

diagonal domains. Strain-variable simulations using comStrainsyn = 1,2.

patibility kernels for other 2D casks®, and the 3D cu- 1. n=1cases: _ _

bic/tetragonal cad, found textures as obtained in the dis-  Triangle/center rectangle, square/oblique, and trian-

placement and phase-field representa@gnand an under- 9le/oblique transitions: o

damped strain dynamics including compatibility potestial For these thr_ee transitions, the_twp-componentOP straln is

was proposed, including Langevin dynamics noise terms witt¢2; €3). _The single non-OP strain is;, and the harmonic

powerlaw spatial correlatiods term is fron = A1|el|2._ Substituting from compatibility
Here we pursue this strain-representation project, dauttri €1 = — 2_p—2,3 Oree/O1, |mmed|atelnyeIds the x 2 matrix

ing to a catalog of 3D ferroelasti¥o p x Nop matrix kernels  kernel of componentd, with prefactor (k) inserted, namely

that incorporate the three compatibility constraints (28-k Uy = 10,04 /O1? S0

nels for ferroelastic transitions were previously give®)n

Instead of using, and solving for, three Lagrange multiglie

we directly solve the constraints in Fourier space for three Uss = v05% /012, Usg = v03% /012

non-OP strains, and substitute in the harmonic non-OP free

energies, followed by an unconstrained minimization in any

remaining non-OP straifs The four 3D transitions have Usg = v0203/0,% = Usz. (A2a)

three distinct kernels, that are plotted in Fig 4. As a cheeX, .

apply the direct substitution method to find 2D kernels, prev Or explicitly,

ously obtained by Lagrange multipliétst®. In Fourier space 5 9D 114 9,4

derivatives go as e§,,> — —Fk,,%, while on a grid with dif- Uz = v(ks” — ky")" /K", Uss = v(2kaky)"/k

ference operatora > — —K,* whereK,, = 2sin(k,/2).

Here in compatibility equations we write for simplicity jus Usa — 02k ko (ko2 — ko 2) k4 = U A2
the wave vectors liké,,, with the understanding that they can 20 = V2hohy (K v )/ 32 (A20)
be replaced by, in grid simulations. Although these 2D transitions all haw¥§op = 2 and

The compatibility constraint in minimizing the harmonic the same compatibility kernel, they of course differ in thei
non-OP termg,, = 3-,(A4;/2)|e;(k)|* only affectsnonuni-  |andau org;, coefficients, and in the differen¥,, values of
form strains with nonzero wave-vector. The uniform or ZEr0their nonzero pseudospin vectors (p0|nt|ng to corners of a
wavevector parabolic terms are freely miDimized by zerotriangle, square, and hexagon, respectively).
values.e;(k = 0) = 0. Thus a prefactor of (k) = 1 — ¢z
must be inserted in the results below for the kernels. The re- 2. n =2 cases:
sultant sign-varying compatibility potentials have zepatial (a) Square/rectangle transition:



The single OP is the deviatoric straip. The non-
OP strains are the 2D compression and shearand
e3, and the harmonic non-OP free energy fs,.
Zizlﬂg(Ai/2)|ei(l§)|2. The compatibility condition yields
es — 012 Ou€a, WhereO, = 0O,/0s. Substitut-
ing yields fruon = (A1/2)[ler(F)[? + 2, 1.0 Gaspeacs’],
whereG,, s = (A3/A1)0,05.

Freely minimizing in the remaining non-OP varialkleas
O fnon/0es (k) = 0, yields e, (k) = Bia(k)ea(k). Substi-
tuting back, the local non-OP terify,,, becomes a nonlocal
compatibility potential for the OP distortionS,,.pat(e2) =

(A1/2)U (K)|es(K)[2, where the kernel is

U(k) = (Ga2 + Roo11)/[1 + G, (A3)

whereRgs 11 = G22G11 — G122. The structure is similar to

the 3D cases below. However, for the 2D case, the remainder

term Rs2 11 = 0 so this becomes

AlU( )—I/Og /[{01 /A1}+{03 /Ag}] (A4a

Or explicitly,

AU (K) = vA; (kp® =k, ?)? ) [k*+ (841 /A3) (ko ky)?]. (A4D)

We fix 24, /A3 ~ 1 for simplicity, so the strength of the
compatibility potential is determined byt,, that is essen-
tially the elastic anisotropy parame#rpy (2.18d). Plots of
U have been given elsewhété? The same result is ob-
tained through Lagrange multipliers: minimizifg,., —
AQ 1 23O en)} N e, e3 yieldse; = AO;/A; fori =
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The 3D compatibility conditions of (2.3) in Fourier space
for Cartesian distortiongnc(e) = k x e(k) x k = 0, can
be written as three equations from diagonal components of
Incompatibility, like Inc(e) . = 0,

2kykzey. = kpez. + kaeyy;
2kzkzezm = kiezz + kiezz;

There are also three equations from the off-diagonal compo-
nents, likelnc(e),, = 0,

kyk.ers = —kZey. + kikye.s + kokpery;
k.kyeyy = —kgezm + kyk.epy + kakyey;
kpkye.. = —k2ewy + kokeey. + kyk.e., (AS)

but these are not new constraints: solving (A7) for sheads an
substituting, (A8) is satisfied as an identity. In the displa
ment representation, for a 3D cubic lattice there are three
independent variable&u,, u,,u.) per lattice point (or per
unit cell). In the equivalent (symmetric) strain repres¢ion,
there are six physical straims, .., eg and three constraints, so
there are agaifi — 3 = 3 independent variables.

The 3D St Venant constraints of (A7) in terms of the Carte-

1,3. Demanding compatibility fixes the Lagrange mu|t|p||er sian distortions can be written in terms of the cubic-lattic

A= —Ose5/[{O?JA1} +{0%/A3}], soeq, e3 are in terms of
es, Yielding the same kernel (A4).

physical distortions (2.6a), by inverting the coefficieratnix,
to get

As mentioned in the text, the square/rhombus is not distinct

from the square/rectangle transition. Nonetheless, thésOP
now ez and the non-OP are , es. The kernelis just @ <+ 3
label interchange,

AU (k) = v05°/({01%/A1} + {027 /A3}). (A5

(b) Rectangle/oblique

The OP is againe; but the non-OP energy,.,
> (At /2)]ex|* is now harmonic in the combinations =
2(e1 + e2) ande_ = 1(e; — ez). The substitution fok,
through compatibility, and free minimization i yields the
kernel withO+ = O; & 05 as

AU (E) = v05? /{042 /AL } +{0_*JA_}]. (46)

B. 3D transitions

1 1 1
€y = —=€1 + —=eg + —=e3;
\/gl \/52 \/63
S SRS I
1
622_761 \/_ (Ag)

This yields the 3D St Venant constraints in terms of physical
distortions,

0ey + 0 ey + 0 e + 0Pe, =0, (A10)

labelled by the three sheaks= 4, 5, 6. Defining

We use the 3D compatibility constraints to obtain St Venant

kernels forn = 3,4, 5.

0% =0¥/0,, (Al1)



the shearsy, es, eg are related to the non-sheaises, e3 by

Z O((j)ea.

a=1,2,3

(A12)

The cubic-lattice compatibility coefficientc)gf) of (A10)
are evaluated from (A7) and (A9) as

-1 1
O = = (k +42), O = =i

V3 V2
@ _ 1 o oy 4@
05 = 252k} — %), 0 = 04 = hyhz. (A13a)
~1 ~1
0(5) = (k24 K2 : 0(5) _ kz;
1 \/g( z m) 2 \/5 z
1
0P = —(2k2 — k2), O = 05 = k.k,. (A13b
3 \/6( x z) 5 5 ( )
0(6) _ _1(k2 —|—k2) 0(6) _ 1 (k2 o k2)'
1 \/g x y/ 2 \/§ x y/
ol = L k2), O = O6 = kyky. (Al3c)

\/6

These will be wused in the cubic/tetragonal,
bic/orthorhombic, and cubic/trigonal transitions, below

For the tetragonal-lattice physical distortions of (2,6hg

Cartesian components can be written as
1 1
Cow = 75(81 +ea); eyy = E(el —e9); €., = e3, (Al4)

and the tetragonal-lattice compatibility coefficientafrA7)
and (A14) are

of - = o) -
O = k2, 0" = 04 = kyk.. (Al5a)
O = —k2, 0" = 05 = k.k,. (A15D)
OfF = <2 +£). OF = — (2 ~k}).
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o =0, 0Y =04 =kyk,. (Albc)
These will be used for the tetragonal/orthorhombic tramsjt
below.

It is useful to define a dimensionless variable, analogous to
the 2D version above, namely

Gop= Y. (A,/A)O0Y, (Al6a)

s=4,5,6

whereG,s = Gp, is symmetric, and a remainder term as
before is defined through products,

Rog s = GapGys — GayGas. (A16D)

Then the kernels for the four 3D transitions are obtained
in terms of theG,g, by a substitution/minimization method
similar to 2D.

3. n=3case:

Cubic/trigonal transition:

For this transition, the OP strains are the shearg =
{es} = eq,e5,e6. The non-OP strains akq, o, e3, and the
harmonic term isfyon = 32, 5 5(Ai/2)]ei(k)|2, with de-
viatoric coefficientsd, = Az by symmetry®. Compatibility
here gives the shear OR), e5, eg in terms of the non-OP as in

(Al2),er= =3 143 Ogs)ei or in matrix form,
€4 oY o5 oY el
es | =—| o o<5> )% ex | . (A17)
€6 OEG) 0(6) OéG) €3

The non-OP can be written in terms of the OP shears by in-
verting the3 x 3 coefficient-matrix)\/ above to directly yield
e = .. 4.5, Bis€s- HereB = M~! = (2/DetM)N,
whereN = adj( )/2. The determinant can be written as
DetM/2 = [O (4)N + 0(5)N + O( )N16] The compo-
nentsiN;, can be evaluated such as

1 e o
Ny = —§[O§5)O§6) - O§6)0§5)]

1
©2y/30,

The element$V,4, N5, Nis; ..

(k2 — k2 — k2). (A18)

.N36 in matrix form are:

(R—kp—k?)  (k—R2I=k2)  (KI—k2—k2)
230, 2E0r, © 20,
K24k k2+k k2—k
(k+ky) (kiKY (k) . (A19)
22f204 2 22\/2052 22\/52()6 2
(K2+KZ k7)) (2kI-k24k7)  (2kI+K+ED)
21/604 2v/605 2v/605
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Evaluation of DetM with (A19) yields the simple result there are three Lagrange multiplieA$®). Then one finds
2{1?18tM = +1, S0 B, :ZNiS, and so the non-OP interms ¢ — AMQ,/A,; e; = 3, A®O /A, From com-
ofthe OP strains are; = > ., - 4 Nises - P (s) _ _ ~(s) _

The St Venant compatibility terms are ob- p_a(lg)blhty, A= (/1-5/(.)5)2@:273[()@ 1+ Gu)
tained by simple substitution into the non-OP har-Oi Gicer/(1 + Gi1), yielding the same kernel as before.
monic terms, fuon =  Suyas(Ai/2le(B)? = This kernel was used earlfér but is here and # explicitly

. - stated.
Yovr—a5.6(A1/2)Us (k)ee(k)er (K)*, where the3 x 3

compatibility matrix kernel for the cubic/trigonal tratien is 5 n=5case:

Tetragonal/orthorhombic transition:
AUger () = v Z AiNyNigr, (A20) For this transition, the single-component OP is one of the
deviatoric strainss». The non-OP strains arg, e3, e4, €5, €,
and the harmonic termi,,,, = (A1/2)|e1|?+(A3/2)|es|*+
and can be numerically evaluated in simulations. Y o—a5.6(As/2)]es|?, with A5 = Ag by symmetry®. Substi-
tuting with (A12), but now with the compatibility coefficién
4. n=4case: (A15) for the tetragonal case,
Cubic/ tetragonal and cubic/orthorhombic transitions:
_ In b_oth cases, the two-component OP are the_&_@ode— 4
viatoric straing(es, e2). The non OP are the remaining com- ¢ =y Z (A; /A1) |es] 2+ Z Gapeacs™], (A24)
pression and shear straias, ey, 5, ¢, and their harrponlc 2 13 o f=1.2.3
terms arefnon = (A1/2)]ex]?* + 25247576(A3/2)|es(k)|2,
with shear coefficientsl, = A; = Ag by symmetry#16  where theG s is defined in (Al6a).
From the compatibility equations (Al12), we havg = Minimizing freely in e, e3 and inverting a2 x 2 matrix
—Da=123 0e, and hence, using the definition (A16a), Yields

i=1,2,3

fron = (A1/2)[ le1]* + Z Ga,peaes”]. (A21) e1 = —[(A3/A1)G12 + Rss 12]e2/Go;
«,3=1,2,3
Minimizing, we gete; = 252273 Bivey with By, = es = —[Gs2 + Ri1.32)e2/Go, (A25a)

—G1e/(1 + Gy1) similar in structure to the square/rectangle
case. It is easy to check using (Al6a) and (A13), Aat whereR,, 3+ is defined in (A16b), and
depends only on cubic-invariant combinationg:efk,, k..

Substituting back into (A21)f,.on(e1) = feompat(€3,€2) Go = [({As/AL} + Ga3)(1 + Gr1) — G24]. (A25b)
where the St Venant term is

The kernel for the tetragonal/orthorhombic transition is
Feompat = Y (A1/2)Usr (K)es(K)er (k)*. (A22)

00'=2,3 AU(K) = v[(A3/A1)Gaz + To] /Gy, (A26).

Here, the compatibility kernel for the cubic/tetragonad dime

cubic/orthorhombic transitions, is tRex 2 matrix with 7o = (A3/A1)Ro211 + Rozss + {GaaRszin —
G12R33.12 — G32R11,32}. The kernel can be evaluated nu-

merically in simulations.
U = v[Geer + Ree 11]/(1 + G11), (A23) As a check, we take uniformity in thedirection, ork, —
0, whenOy4, Os — 0, and it is clear from compatibility that
With Ry 11 = GurGii — GG This kernel can be  ¢3 = ¢4 = e5 = 0. Then one recovers, withdgs — As,
numerically evaluated in simulations. precisely the form of the square/rectangle kernel of (A4).
Finally, the compatibility kernels in Fourier space aretplo
As in all cases, the same results can be obtained byed for the four 3D transitions in Fig. 4 below, reflecting the
minimizing {fnon — D ema56 A, O&S)ea]} where  high temperature unit-cell symmetries.
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FIG. 1. Schematidigures of five distinct ferroelastic transitions FIG. 2. Schematicfigures of four ferroelastic transitions in 3D,
driven by strains in 2D, with lower symmetry variants on tight: with the lower symmetry variants on the right: (a) tetragdoeor-
square to rectangle (SR); rectangle to oblique (RO); tteang thorhombic; (b) cubic to tetragonal; (c) cubic to trigonathwtwo
centered-rectangle (TR); square to oblique (SO), triatmleblique  other variants not shown; (d) cubic to orthorhombic withrfother
(TO). For the TR case, we mark one of three equivalent laficiat variants not shown.

boxes, that becomes the new centred-rectangle unit cefleofittst

variant on the right, under the simplest distortion ordarameter.

The other two equivalent variants have similar unit-celfgt are

simply from+27 /3 order-parameter rotations of that distortion. For

the TO case, the equivalent rotations are integer multipii@s: /6.

FIG. 3. Scaled free energy versd& p order parameter compo-
nents, with minima at austenite zero state ad martensite vari-
ants, and with arrows to minima denoting pseudospin vect(ay
Minima on a line forNop = 1, Ny = 2, square to rectangle (and
also tetragonal to orthorhombic, rectangle to oblique)) Kinima
on a triangle forNop = 2, Ny = 3, cubic to tetragonal (and tri-
angle to centered rectangle); (c) Minima on a squareNer = 2,
Ny = 4, square to oblique polygon; (d) Minima on hexagon for
Nop = 2, Ny = 6, for cubic to orthorhombic (and triangle to
oblique); (e) Minima (schematic) on a tetrahedron féppr = 3,
Ny = 8, cubic to trigonal.



FIG. 4. Compatibility kernel component ,(kz, ky, k-) in color
plots versus(kz, ky, k.) for 3D transitions. (a) Tetragonal to or-
thorhombic case with/ (k). The strength of the kernel is represented
by a color coding in which dark brown represents the relgiosi-
tive maxima, and dark blue the minima with zero values.Zlaxis

is vertical and the projections shown arekat = 0,k, = 0 and
k. = 0. The maxima shown appear in the plane= 0, and minima
for k, = 0 andk. = 0. (b) Cubic to tetragonal (and also cubic to
orthorhombic case) kernels, %Q(E), (i) U:;:;(E), and (iii) Uz:;(E).
The three components acquire positive values, and asswover<l
leaf anisotropy in the 2D plands, = 0,k, = 0 andk. = 0. (c)
Cubic to trigonal case, with a kernel componé/fats(l;). In addition

to the clover-leaf pattern in the plarig = 0, there is a butterfly
anisotropy in the plang, = 0, similar to that of the square to rect-
angle kernel in 2D.

TABLE |. Generic numbers for the scaled Landau free energies
listed in order of increasing number of structural variaNis. The
columns are: (1) the type of transition; (2) spatial dimenality;

(3) order-parameter (OP) dimensionaliyp » or number of pseu-
dospin components ; (4) number of free energy minima atitians

or number of pseudospin-vector statdg; + 1; (5) maximum-order
invariantp,,.. retained in the free energy; (6) number of material co-
efficientsN,,,.+, and type of scaled quasi-universality (g-u) as in text;
(7) condition obeyed by OP-space angular locatignof minima ;

(8) 'polyhedron’ from minima inNo p dimensions.

Transition d|Nop|Nv + 1| pmaz | Nmat, g-u{angular min condition polyhedron
tetrag/orthorhombic 3[1 2+1 6 3, first sin 2¢m =0 line
square/rectangle 2|1 2+1 6 3, first sin 2¢m =0 line
square/ rhombus 21 2+1 6 3, first sin 2¢, =0 line
rectangle/oblique 21 2+1 6 3, first sin 2¢, =0 line
cubic/tetragonal 3|2 3+1 4 3, first sin 3¢m =0 triangle
triangle/centred rectangl2| 2 3+1 ||4 3, first sin 3¢, =0 triangle
cubic/trigonal 3|3 4+1 4 4, second|sin 4¢,, = 0, cos® 0,, = % tetrahedron
square/oblique 2|2 4+1 6 4, second|sin 4¢,, =0 square
cubic/orthorhombic 3|2 6+1 8 6, third |sin6¢,, =0 hexagon
triangle/oblique 2|2 6+1 8 6, third |sin6¢,, =0 hexagon
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