314 research outputs found

    Infection dynamics of two renal myxozoans in hatchery reared fry and juvenile Atlantic cod Gadus morhua L.

    Get PDF
    In order to study the infection dynamics of 2 renal myxozoans, Zschokkella hildae Auerbach, 1910 and Gadimyxa atlantica Køie, Karlsbakk and Nylund, 2007 in cultured Atlantic cod, Gadus morhua L. aged 3–19 months, a specific single-round PCR assay and a double-label in situ hybridization protocol were developed. The results demonstrated that the 2 myxozoans show spatial separation of their development with regard to spore formation inside the renal tubules versus the collecting ducts and ureters, as well as temporal separation with Z. hildae proliferating and developing spores only once the G. atlantica infection decreases, despite the presence of both myxozoans in the smallest fry studied. These results strongly suggest within-host competition of the 2 myxozoans with potential suppression of Z. hildae by G. atlantica until G. morhua acquires immunity against G. atlantica. The quantification of the G. atlantica infection inside the renal tubules before and after a 29-day experimental growth performance study using fry from hatcheries with differing filtration systems showed that the intensity of infection with G. atlantica seems to be controlled if prolonged exposure to the myxozoan transmission stages takes place from hatching onwards. Surprisingly, growth rates in the trial were inversely affected suggesting that G. atlantica does not negatively influence cod fry growth performance

    A Novel Hypothesis for Thalidomide-Induced Limb Teratogenesis: Redox Misregulation of the NF-κB Pathway

    Full text link
    Several hypotheses have been proposed to explain the mechanisms of thalidomide teratogenesis, although none adequately accounts for the observed malformations and explains the basis for species specificity. Recent observations that thalidomide increases the production of free radicals and elicits oxidative stress, coupled with new insights into the redox regulation of nuclear transcription factors, lead to the suggestion that thalidomide may act through redox misregulation of the limb outgrowth pathways. Oxidative stress, as marked by glutathione depletion/oxidation and a shift in intracellular redox potential toward the positive, occurs preferentially in limbs of thalidomide-sensitive rabbits, but not in resistant rats. DNA binding of nuclear factor κ-B (NF-κB), a redox-sensitive transcription factor and key regulator of limb outgrowth, was shown to be significantly attenuated in rabbit limb cells and could be restored following the addition of a free radical spin-trapping agent, phenyl N-tert-butyl nitrone. The inability of NF-κB to bind to its DNA promoter results in the failure of limb cells to express fibroblast growth factor (FGF)-10 and twist in the limb progress zone (PZ) mesenchyme, which in turn attenuates expression of FGF-8 in the apical ectodermal ridge (AER). Failure to establish an FGF-10/FGF-8 feedback loop between the PZ and AER results in the truncation of limb outgrowth. We hypothesize that species-selective alterations in redox microenvironment caused by free radical production from thalidomide results in attenuation of the NF-κB-mediated gene expression that is responsible for limb outgrowth.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63400/1/152308604771978291.pd

    The Autoimmune Disorder Susceptibility Gene CLEC16A Restrains NK Cell Function in YTS NK Cell Line and Clec16a Knockout Mice

    Get PDF
    CLEC16A locus polymorphisms have been associated with several autoimmune diseases. We overexpressed CLEC16A in YTS natural killer (NK) cells and observed reduced NK cell cytotoxicity and IFN-γ release, delayed dendritic cell (DC) maturation, decreased conjugate formation, cell-surface receptor downregulation and increased autophagy. In contrast, siRNA mediated knockdown resulted in increased NK cell cytotoxicity, reversal of receptor expression and disrupted mitophagy. Subcellular localization studies demonstrated that CLEC16A is a cytosolic protein that associates with Vps16A, a subunit of class C Vps-HOPS complex, and modulates receptor expression via autophagy. Clec16a knockout (KO) in mice resulted in altered immune cell populations, increased splenic NK cell cytotoxicity, imbalance of dendritic cell subsets, altered receptor expression, upregulated cytokine and chemokine secretion. Taken together, our findings indicate that CLEC16A restrains secretory functions including cytokine release and cytotoxicity and that a delicate balance of CLEC16A is needed for NK cell function and homeostasis

    Unlocking the potential of publicly available microarray data using inSilicoDb and inSilicoMerging R/Bioconductor packages

    Get PDF
    BACKGROUND: With an abundant amount of microarray gene expression data sets available through public repositories, new possibilities lie in combining multiple existing data sets. In this new context, analysis itself is no longer the problem, but retrieving and consistently integrating all this data before delivering it to the wide variety of existing analysis tools becomes the new bottleneck. RESULTS: We present the newly released inSilicoMerging R/Bioconductor package which, together with the earlier released inSilicoDb R/Bioconductor package, allows consistent retrieval, integration and analysis of publicly available microarray gene expression data sets. Inside the inSilicoMerging package a set of five visual and six quantitative validation measures are available as well. CONCLUSIONS: By providing (i) access to uniformly curated and preprocessed data, (ii) a collection of techniques to remove the batch effects between data sets from different sources, and (iii) several validation tools enabling the inspection of the integration process, these packages enable researchers to fully explore the potential of combining gene expression data for downstream analysis. The power of using both packages is demonstrated by programmatically retrieving and integrating gene expression studies from the InSilico DB repository [https://insilicodb.org/app/]

    Uncoordinated Transcription and Compromised Muscle Function in the Lmna-Null Mouse Model of Emery-Dreifuss Muscular Dystrophy

    Get PDF
    LMNA encodes both lamin A and C: major components of the nuclear lamina. Mutations in LMNA underlie a range of tissue-specific degenerative diseases, including those that affect skeletal muscle, such as autosomal-Emery-Dreifuss muscular dystrophy (A-EDMD) and limb girdle muscular dystrophy 1B. Here, we examine the morphology and transcriptional activity of myonuclei, the structure of the myotendinous junction and the muscle contraction dynamics in the lmna-null mouse model of A-EDMD. We found that there were fewer myonuclei in lmna-null mice, of which ∼50% had morphological abnormalities. Assaying transcriptional activity by examining acetylated histone H3 and PABPN1 levels indicated that there was a lack of coordinated transcription between myonuclei lacking lamin A/C. Myonuclei with abnormal morphology and transcriptional activity were distributed along the length of the myofibre, but accumulated at the myotendinous junction. Indeed, in addition to the presence of abnormal myonuclei, the structure of the myotendinous junction was perturbed, with disorganised sarcomeres and reduced interdigitation with the tendon, together with lipid and collagen deposition. Functionally, muscle contraction became severely affected within weeks of birth, with specific force generation dropping as low as ∼65% and ∼27% of control values in the extensor digitorum longus and soleus muscles respectively. These observations illustrate the importance of lamin A/C for correct myonuclear function, which likely acts synergistically with myotendinous junction disorganisation in the development of A-EDMD, and the consequential reduction in force generation and muscle wasting

    Genome-wide association study for acute otitis media in children identifies FNDC1 as disease contributing gene

    Get PDF
    Acute otitis media (AOM) is among the most common pediatric diseases, and the most frequent reason for antibiotic treatment in children. Risk of AOM is dependent on environmental and host factors, as well as a significant genetic component. We identify genome-wide significance at a locus on 6q25.3 (rs2932989, Pmeta=2.15 × 10-09), and show that the associated variants are correlated with the methylation status of the FNDC1 gene (cg05678571, P=1.43 × 10-06), and further show it is an eQTL for FNDC1 (P=9.3 × 10-05). The mouse homologue, Fndc1, is expressed in middle ear tissue and its expression is upregulated upon lipopolysaccharide treatment. In this first GWAS of AOM and the largest OM genetic study to date, we identify the first genome-wide significant locus associated with AOM

    Attenuated variants of Lesch-Nyhan disease

    Get PDF
    Lesch–Nyhan disease is a neurogenetic disorder caused by deficiency of the enzyme hypoxanthine–guanine phosphoribosyltransferase. The classic form of the disease is described by a characteristic syndrome that includes overproduction of uric acid, severe generalized dystonia, cognitive disability and self-injurious behaviour. In addition to the classic disease, variant forms of the disease occur wherein some clinical features are absent or unusually mild. The current studies provide the results of a prospective and multi-centre international study focusing on neurological manifestations of the largest cohort of Lesch–Nyhan disease variants evaluated to date, with 46 patients from 3 to 65 years of age coming from 34 families. All had evidence for overproduction of uric acid. Motor abnormalities were evident in 42 (91%), ranging from subtle clumsiness to severely disabling generalized dystonia. Cognitive function was affected in 31 (67%) but it was never severe. Though none exhibited self-injurious behaviours, many exhibited behaviours that were maladaptive. Only three patients had no evidence of neurological dysfunction. Our results were compared with a comprehensive review of 78 prior reports describing a total of 127 Lesch–Nyhan disease variants. Together these results define the spectrum of clinical features associated with hypoxanthine–guanine phosphoribosyltransferase deficiency. At one end of the spectrum are patients with classic Lesch–Nyhan disease and the full clinical phenotype. At the other end of the spectrum are patients with overproduction of uric acid but no apparent neurological or behavioural deficits. Inbetween are patients with varying degrees of motor, cognitive, or behavioural abnormalities. Recognition of this spectrum is valuable for understanding the pathogenesis and diagnosis of all forms of hypoxanthine–guanine phosphoribosyltransferase deficiency

    Skeletal muscle gene expression in response to resistance exercise: sex specific regulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The molecular mechanisms underlying the sex differences in human muscle morphology and function remain to be elucidated. The sex differences in the skeletal muscle transcriptome in both the resting state and following anabolic stimuli, such as resistance exercise (RE), might provide insight to the contributors of sexual dimorphism of muscle phenotypes. We used microarrays to profile the transcriptome of the biceps brachii of young men and women who underwent an acute unilateral RE session following 12 weeks of progressive training. Bilateral muscle biopsies were obtained either at an early (4 h post-exercise) or late recovery (24 h post-exercise) time point. Muscle transcription profiles were compared in the resting state between men (n = 6) and women (n = 8), and in response to acute RE in trained exercised vs. untrained non-exercised control muscle for each sex and time point separately (4 h post-exercise, n = 3 males, n = 4 females; 24 h post-exercise, n = 3 males, n = 4 females). A logistic regression-based method (LRpath), following Bayesian moderated t-statistic (IMBT), was used to test gene functional groups and biological pathways enriched with differentially expressed genes.</p> <p>Results</p> <p>This investigation identified extensive sex differences present in the muscle transcriptome at baseline and following acute RE. In the resting state, female muscle had a greater transcript abundance of genes involved in fatty acid oxidation and gene transcription/translation processes. After strenuous RE at the same relative intensity, the time course of the transcriptional modulation was sex-dependent. Males experienced prolonged changes while females exhibited a rapid restoration. Most of the biological processes involved in the RE-induced transcriptional regulation were observed in both males and females, but sex specificity was suggested for several signaling pathways including activation of notch signaling and TGF-beta signaling in females. Sex differences in skeletal muscle transcriptional regulation might implicate a mechanism behind disproportional muscle growth in males as compared with female counterparts after RE training at the same relative intensity.</p> <p>Conclusions</p> <p>Sex differences exist in skeletal muscle gene transcription both at rest and following acute RE, suggesting that sex is a significant modifier of the transcriptional regulation in skeletal muscle. The findings from the present study provide insight into the molecular mechanisms for sex differences in muscle phenotypes and for muscle transcriptional regulation associated with training adaptations to resistance exercise.</p
    corecore