81 research outputs found

    Induction of otic structures by canonical Wnt signalling in medaka

    Get PDF
    The Wnt family of signalling proteins is known to participate in multiple developmental decisions during embryogenesis. We misexpressed Wnt1 in medaka embryos and observed anterior truncations, similar to those described for ectopic activation of canonical Wnt signalling in other species. Interestingly, when we induced a heat-shock Wnt1 transgenic line exactly at 30% epiboly, we observed multiple ectopic otic vesicles in the truncated embryos. The vesicles then fused, forming a single large ear structure. These “cyclopic ears” filled the complete anterior region of the embryos. The ectopic induction of otic development can be explained by the juxtaposition of hindbrain tissue with anterior ectoderm. Fibroblast growth factor (Fgf) ligands are thought to mediate the otic-inducing properties of the hindbrain. However, signals different from Fgf3 and Fgf8 are necessary to explain the formation of the ectopic ear structures, suggesting that Wnt signalling is involved in the otic induction process in medaka

    The Farsi version of the Hypomania Check-List 32 (HCL-32): Applicability and indication of a four-factorial solution

    Get PDF
    Background: Data from the Iranian population for hypomania core symptom clusters are lacking. The aim of the present study was therefore to apply the Farsi version of the Hypomania-Check-List 32 (HCL-32), and to explore its factorial structure.Methods: A total of 163 Iranian out-patients took part in the study; 61 suffered from Major Depressive Disorder (MDD), and 102 suffered from Bipolar Disorders (BP). Participants completed the Mood Disorder Questionnaire (MDQ) and the Hypomania Checklist (HCL-32). Exploratory factor analyses were used to examine the properties of the HCL-32. A ROC-curve analysis was performed to calculate sensitivity and specificity.Results: The HCL-32 differentiated between patients with MDD and with BP. Psychometric properties were satisfactory: sensitivity: 73; specificity: 91. MDQ and HCL-32 did correlate highly. No differences were found between patients suffering from BP I and BP II.Discussion: Instead of the two-factorial structure of the HCL-32 reported previously, the present pattern of factorial results suggest a distinction between four factors: two broadly positive dimensions of hypomania ("physically and mentally active"; "positive social interactions") and two rather negative dimensions ("risky behavior and substance use"; "difficulties in social interaction and impatience").Conclusion: The Farsi version of the HCL-32 proved to be applicable, and therefore easy to introduce within a clinical context. The pattern of results suggests a four factorial solution. © 2011 Haghighi et al; licensee BioMed Central Ltd

    a festival at the interstices of value systems

    Get PDF
    This chapter puts observations made in previous parts of this book into perspective, as it highlights the diversity of positionalities in internal relations in the context of the organization of an Iranian cultural festival. As agents that appeared in previous chapters come to interact with the young and unexperienced organizer, Behruz, during fundraising activities and at the festival itself, it becomes clear that their exchanges are driven by multiple, partly compatible, partly competing strategies of capital creation deriving from individual or collective politics of value within a large variety of local and transnational social fields

    Establishment of Motor Neuron-V3 Interneuron Progenitor Domain Boundary in Ventral Spinal Cord Requires Groucho-Mediated Transcriptional Corepression

    Get PDF
    Background: Dorsoventral patterning of the developing spinal cord is important for the correct generation of spinal neuronal types. This process relies in part on cross-repressive interactions between specific transcription factors whose expression is regulated by Sonic hedgehog. Groucho/transducin-like Enhancer of split (TLE) proteins are transcriptional corepressors suggested to be recruited by at least certain Sonic hedgehog-controlled transcription factors to mediate the formation of spatially distinct progenitor domains within the ventral spinal cord. The aim of this study was to characterize the involvement of TLE in mechanisms regulating the establishment of the boundary between the most ventral spinal cord progenitor domains, termed pMN and p3. Because the pMN domain gives rise to somatic motor neurons while the p3 domain generates V3 interneurons, we also examined the involvement of TLE in the acquisition of these neuronal fates. Methodology and Principal Findings: A combination of in vivo loss- and gain-of-function studies in the developing chick spinal cord was performed to characterize the role of TLE in ventral progenitor domain formation. It is shown here that TLE overexpression causes increased numbers of p3 progenitors and promotes the V3 interneuron fate while suppressing the motor neuron fate. Conversely, dominant-inhibition of TLE increases the numbers of pMN progenitors and postmitotic motor neurons. Conclusion: Based on these results, we propose that TLE is important to promote the formation of the p3 domain an

    Identification and Characterization of the Lamprey High-Mobility Group Box 1 Gene

    Get PDF
    High-mobility group box 1 (HMGB1), a highly conserved DNA-binding protein, plays an important role in maintaining nucleosome structures, transcription, and inflammation. We identified a homolog of HMGB1 in the Japanese lamprey (Lampetra japonica). The Lampetra japonica HMGB1 gene (Lj-HMGB1) has over 70% sequence identity with its homologs in jawed vertebrates. Despite the reasonably high sequence identity with other HMGB1 proteins, Lj-HMGB1 did not group together with these proteins in a phylogenetic analysis. We examined Lj-HMGB1 expression in lymphocyte-like cells, and the kidneys, heart, gills, and intestines of lampreys before and after the animals were challenged with lipopolysaccharide (LPS) and concanavalin A (ConA). Lj-HMGB1 was initially expressed at a higher level in the heart, but after treatment with LPS and ConA only the gills demonstrated a significant up-regulation of expression. The recombinant Lj-HMGB1 (rLj-HMGB1) protein bound double-stranded DNA and induced the proliferation of human adenocarcinoma cells to a similar extent as human HMGB1. We further revealed that Lj-HMGB1 was able to induce the production of tumor necrosis factor-α (TNF-α), a pro-inflammatory mediator, in activated human acute monocytic leukemia cells. These results suggest that lampreys use HMGB1 to activate their innate immunity for the purpose of pathogen defense

    Low Frequency Vibrations Disrupt Left-Right Patterning in the Xenopus Embryo

    Get PDF
    The development of consistent left-right (LR) asymmetry across phyla is a fascinating question in biology. While many pharmacological and molecular approaches have been used to explore molecular mechanisms, it has proven difficult to exert precise temporal control over functional perturbations. Here, we took advantage of acoustical vibration to disrupt LR patterning in Xenopus embryos during tightly-circumscribed periods of development. Exposure to several low frequencies induced specific randomization of three internal organs (heterotaxia). Investigating one frequency (7 Hz), we found two discrete periods of sensitivity to vibration; during the first period, vibration affected the same LR pathway as nocodazole, while during the second period, vibration affected the integrity of the epithelial barrier; both are required for normal LR patterning. Our results indicate that low frequency vibrations disrupt two steps in the early LR pathway: the orientation of the LR axis with the other two axes, and the amplification/restriction of downstream LR signals to asymmetric organs

    Differential Modulation of TCF/LEF-1 Activity by the Soluble LRP6-ICD

    Get PDF
    The canonical Wnt/β-catenin (Wnt) pathway is a master transcriptional regulatory signaling pathway that controls numerous biological processes including proliferation and differentiation. As such, transcriptional activity of the Wnt pathway is tightly regulated and/or modulated by numerous proteins at the level of the membrane, cytosol and/or nucleus. In the nucleus, transcription of Wnt target genes by TCF/LEF-1 is repressed by the long Groucho/TLE co-repressor family. However, a truncated member of the Groucho/TLE family, amino terminal enhancer of Split (AES) can positively modulate TCF/LEF-1 activity by antagonizing long Groucho/TLE members in a dominant negative manner. We have previously shown the soluble intracellular domain of the LRP6 receptor, a receptor required for activation of the Wnt pathway, can positively regulate transcriptional activity within the Wnt pathway. In the current study, we show the soluble LRP6 intracellular domain (LRP6-ICD) can also translocate to the nucleus in CHO and HEK 293T cells and in contrast to cytosolic LRP6-ICD; nuclear LRP6-ICD represses TCF/LEF-1 activity. In agreement with previous reports, we show AES enhances TCF/LEF-1 mediated reporter transcription and further we demonstrate that AES activity is spatially regulated in HEK 293T cells. LRP6-ICD interacts with AES exclusively in the nucleus and represses AES mediated TCF/LEF-1 reporter transcription. These results suggest that LRP6-ICD can differentially modulate Wnt pathway transcriptional activity depending upon its subcellular localization and differential protein-protein interactions
    corecore