17 research outputs found

    Forced vibration analysis of multi-degree-of-freedom nonlinear systems with the extended Galerkin method

    Get PDF
    In this study, the dynamic response behavior of a generalized nonlinear dynamic system is investigated using a newly proposed extended Galerkin method. The algebraic equations of vibration amplitudes are obtained through an integration of the weighted functions. The new method is equivalent to the harmonic balance method but with a much simpler calculation procedure and a higher efficiency. This is the first time to use the method for the analysis of nonlinear systems with high number of modes, manifesting that the method is applicable to forced vibrations of nonlinear behavior. The method is further validated by the numerical Runge-Kutta method

    Developing an Ontology-Based Cold Chain Logistics Monitoring and Decision System

    Get PDF
    Nowadays the cold chain logistics for perishable goods is increasingly complex, while most of the research works are focusing on the monitoring of temperature and humidity but seldom on the assessment and decision support for the monitored cold chain quality. In this context, a monitoring and decision system based on wireless sensor networks (WSN) and ontology is proposed in this paper which consists of sensing layer, network layer, and application layer. Ontology, as a shared concept model, can describe the objective world better with its own syntax and provides the general understanding of the specialized knowledge in a domain. Therefore, cold chain quality assessment software based on ontology has been developed; consequently, assessment and diagnosis for cold chain quality can be achieved, which can provide constructive advice and suggestions for its treatment. A demonstration of the system along a rabies vaccine logistics chain is validated in this paper. These results proved that this system presents important advantages such as effective regulation, low power consumption, and accurate ontology-based analysis

    Language Inclusion Checking of Timed Automata Based on Property Patterns

    No full text
    The language inclusion checking of timed automata is described as the following: given two timed automata M and N, where M is a system model and N is a specification model (which represents the properties that the system needs to satisfy), check whether the language of M is included in the language of N. The language inclusion checking of timed automata can detect whether a system model satisfies a given property under the time constraints. There exist excellent studies on verifying real-time systems using timed automata. However, there is no thorough method of timed automata language inclusion checking for real-life systems. Therefore, this paper proposes a language inclusion checking method of timed automata based on the property patterns. On the one hand, we summarize commonly used property patterns described by timed automata, which can guide people to model the properties with time constraints. On the other hand, the system model M often contains a large number of events, but in general, the property N only needs to pay attention to the sequences and time limits of a few events. Therefore, the timed automata language inclusion checking algorithm is improved so that only the concerned events are required. Our method is applied to a water disposal system and it is also evaluated using benchmark systems. The determinization problem of timed automata is undecidable, which may lead to an infinite state space. However, our method is still practical because the properties established according to property patterns are often deterministic

    Language Inclusion Checking of Timed Automata Based on Property Patterns

    No full text
    The language inclusion checking of timed automata is described as the following: given two timed automata M and N, where M is a system model and N is a specification model (which represents the properties that the system needs to satisfy), check whether the language of M is included in the language of N. The language inclusion checking of timed automata can detect whether a system model satisfies a given property under the time constraints. There exist excellent studies on verifying real-time systems using timed automata. However, there is no thorough method of timed automata language inclusion checking for real-life systems. Therefore, this paper proposes a language inclusion checking method of timed automata based on the property patterns. On the one hand, we summarize commonly used property patterns described by timed automata, which can guide people to model the properties with time constraints. On the other hand, the system model M often contains a large number of events, but in general, the property N only needs to pay attention to the sequences and time limits of a few events. Therefore, the timed automata language inclusion checking algorithm is improved so that only the concerned events are required. Our method is applied to a water disposal system and it is also evaluated using benchmark systems. The determinization problem of timed automata is undecidable, which may lead to an infinite state space. However, our method is still practical because the properties established according to property patterns are often deterministic

    CEPC Technical Design Report -- Accelerator

    No full text
    The Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s

    CEPC Technical Design Report -- Accelerator

    No full text
    International audienceThe Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s
    corecore