
 

 

Forced vibration analysis of multi-degree-of-freedom nonlinear 

systems with an extended Galerkin method 

Baiyang Shia, Jian Yanga and Ji Wangb* 

aDepartment of Mechanical, Materials and Manufacturing Engineering, University of 

Nottingham Ningbo China, Ningbo 315100, P.R. China; bPiezoelectric Device 

Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, 

Ningbo 315211, P.R. China 

*Corresponding author: wangji@nbu.edu.cn 



 

 

Forced vibration analysis of multi-degree-of-freedom nonlinear 

systems with an extended Galerkin method 

In this study, the dynamic response behaviour of a generalised nonlinear dynamic 

system is investigated using a newly proposed extended Galerkin method. The 

algebraic equations of vibration amplitudes are obtained through an integration of 

the weighted functions. The new method is equivalent to the harmonic balance 

method but with a much simpler calculation procedure and a higher efficiency. 

This is the first time to use the method for the analysis of nonlinear systems with 

high number of modes, manifesting that the method is applicable to forced 

vibrations of nonlinear behaviour. The method is further validated by the numerical 

Runge-Kutta method. 

Keywords: Galerkin method; nonlinear vibration; multi-degree of freedom; 
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1. Introduction 

The Galerkin method based on the forced diminish of weighted residuals is a widely 

accepted technique to analyze the natural frequency, response behaviour, and structural 

vibration of complex dynamical systems1-3.  The method has been widely used for free 

vibrations as a powerful and simple tool for approximate analysis of vibration frequency 

and mode shapes of continuous systems and structures. Furthermore, the method is 

usually demonstrated and applied to linear and nonlinear systems as can be found in 

textbooks and literatures4-8.  This method mainly requires the integral of weighted 

residuals of basis functions of popular types such as trigonometric functions and 

polynomials over the physical domain to be zero.  Further extension of Galerkin method 

is known as the foundation of the popular and powerful finite element method for 

numerical solutions of differential equations widely encountered in engineering and 

scientific problems these days. Undoubtedly, any further development of Galerkin 

method will also have impact on the future functions and algorithms of finite element 



 

 

software. 

The use of the Galerkin method became popular since the early 1980s, it was 

found that the Galerkin method can be extended to nonlinear vibrations through the 

integration of harmonic terms in one period of the fundamental frequency. Lau et al.9, 10 

proposed the incremental harmonic balance method (IHBM) to investigate the nonlinear 

vibration of elastic systems including plates, shallow shells and columns. Kim and 

Perkins11 used the Galerkin method for non-smooth dynamic systems, e.g., systems with 

friction, impact, clearances.  Zhang et al.12 investigated the vibration suppression 

performance of an elastic beam with inerter-based nonlinear energy sink. Recently, some 

studies13-15 have been reported to investigate the vibration transmission characteristics in 

nonlinear smooth/non-smooth systems using HBM with alternating frequency time 

(AFT). All these methods can be used to obtain the approximate analytical results using 

different approximation orders and with different computational efficiency. In a recent 

study16 searching for innovative techniques solving nonlinear vibration problems, it was 

found that the extension of Galerkin method has equally effective and accurate results 

compared with others approaches, but it was more efficient in the derivation and 

calculation. Actually, the equivalence of the extended Galerkin method (EGM) and other 

popular methods such as the HBM is known, and a new procedure is established and 

tested based on this fact. As a result, the new procedure can be adopted for vibration 

analyses of both linear and nonlinear systems as a unified approach to take the advantage 

of the popular method. However, previous studies are mainly focused on single or two-

DOF nonlinear systems, and there is little research on the application of extended 

Galerkin method in dynamical systems with higher number of modes. Some work on 

multiple DOFs has been carried out on 3-DOF nonlinear vibration systems with modal 

interactions17 and nonlinear energy sink18.  



 

 

In this study, the recently extended Galerkin method is developed to investigate 

the dynamic response of a generalised multi-degree of freedom (DOF) nonlinear 

dynamical system as a new solution technique. Such problems have wide engineering 

applications in machinery and structures with different solution techniques including 

propulsion shafting system19, 20, spur gear system21, robotics22 and multi-storey 

building23.  The nonlinearity of the system is characterized by a nonlinear spring with 

cubic stiffness coefficient. Three case studies are presented, including a single-DOF 

oscillator, a coupled 2-DOF system and a 3-DOF system, demonstrating the application 

of the method to forced vibration problems. The first-order, second-order, and third-order 

analytical results are obtained with the extended Galerkin method and compared with the 

numerical Runge-Kutta (RK) method with satisfaction. 

2. Modelling and formulations 

The validation of the extended Galerkin method starts with a typical nonlinear 

system at forced vibrations shown in Figure 1 with a schematic representation of a 

coupled Q-degree-of-freedom (Q-DOF) nonlinear system. The first subsystem has mass 

𝑚1 subjected to an external harmonic force 𝑓 cos 𝜔𝑡, where 𝑓 is the excitation amplitude 

and 𝜔 is the excitation frequency. A Duffing-type stiffness nonlinearity with nonlinear 

stiffness coefficient 𝑘𝑛𝑙 exists in the first subsystem so that the nonlinear restoring force 

has a cubic relationship with the displacement of 𝑚1. Other stiffness and damping 

coefficients are all linear, e.g., the 𝑗-th oscillatory mass 𝑚𝑗 links to linear springs with 

coefficients 𝑘𝑗 and 𝑘𝑗+1 and also connects linear viscous dampers with damping 

coefficients 𝑐𝑗 and 𝑐𝑗+1 (1 ≤ 𝑗 ≤ 𝑄). The displacements of each oscillator are denoted as 

𝑥1,… , 𝑥𝑗 , … , 𝑥𝑄. For the static equilibrium condition and the springs are un-deformed, 



 

 

𝑥1 = 𝑥𝑗 = 𝑥𝑄 = 0. The oscillators move horizontally without friction. It should also be 

noted that all parameters are dimensionless. 
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Figure 1. A schematic representation of a generalized Q-DOF vibration system 

The governing equation of the j-th DOF mass in Figure 1 can be written as  

𝑚𝑗�̈�𝑗 + (𝑥𝑗 − 𝑥𝑗−1)𝑘𝑗 + (�̇�𝑗 − �̇�𝑗−1)𝑐𝑗 − (𝑥𝑗+1 − 𝑥𝑗)𝑘𝑗+1 − (�̇�𝑗+1 − �̇�𝑗)𝑐𝑗+1 + 𝑓𝑗,nl = 𝑓𝑗,ex,  

(1)                                                                               

where 𝑥𝑗, �̇�𝑗 and �̈�𝑗 are the displacement, velocity and acceleration of the mass at the j-th 

coordinate, and 𝑥0 = �̇�0 = 𝑥𝑄+1 = �̇�𝑄+1 = 0; 𝑓𝑗,nl and 𝑓𝑗,ex are the nonlinear term and 

external force applying to the j-th DOF mass, and they are equal to zero if 𝑗 > 1, i.e., only 

consider the nonlinearity and external force factors applying to the first coordinate. Such 

a problem has been studied before using many methods including the harmonic balance 

method for analytical approximations and direct numerical integrations by the Runge-

Kutta method24. 

The total response of Eq. (1) is the sum of the transient solution and the steady-

state solution. The former represents the natural response (complementary function) that 

approaches to zero as time goes to infinity. The latter is the forced response, also known 

as the particular integral. In engineering applications, for a dynamical system subjected 

to a harmonic excitation force, the periodic steady-state solution is normally of interest4, 



 

 

25. Therefore, the general solutions in the steady state of Eq. (1) can be expressed by N-

th order truncated Fourier series: 

𝑥𝑗 = ∑ (𝑥𝑗,2𝑛−1 cos 𝑛𝜔𝑡 + 𝑥𝑗,2𝑛 sin 𝑛𝜔𝑡)𝑁
𝑛=1 ,                                                (2) 

and consequently 

�̇�𝑗 = 𝜔 ∑ (−𝑛𝑥𝑗,2𝑛−1 sin 𝑛𝜔𝑡 + 𝑛𝑥𝑗,2𝑛 cos 𝑛𝜔𝑡)𝑁
𝑛=1 ,                                      (3) 

�̈�𝑗 = −𝜔2 ∑ (𝑛2𝑥𝑗,2𝑛−1 cos 𝑛𝜔𝑡 + 𝑛2𝑥𝑗,2𝑛 sin 𝑛𝜔𝑡)𝑁
𝑛=1 .                                (4) 

where 𝑛 = 1, 2, … , 𝑁, 𝑥𝑗,2𝑛−1 and 𝑥𝑗,2𝑛 are the Fourier coefficients of the cosine and sine 

terms, respectively. Therefore, the nonlinear terms and external forces can be written as 

𝑓𝑗,nl = {
𝑘nl𝑥1

3 = 𝑘nl ∑ (𝑞2𝑛−1 cos 𝑛𝜔𝑡 + 𝑞2𝑛 sin 𝑛𝜔𝑡)𝑁
𝑛=1 , when 𝑗 = 1

0,    when 𝑗 > 1
,                    (5) 

𝑓𝑗,ex = {
𝑓 cos 𝜔𝑡 , when 𝑗 = 1

0, when 𝑗 > 1
,                                                       (6) 

where the coefficients 𝑞2𝑛−1 and 𝑞2𝑛 are calculated by 

𝑞2𝑛−1 =
𝜔

𝜋
∫ 𝑥1

3 cos 𝑛𝜔𝑡 d𝑡
2𝜋/𝜔

0
, 𝑞2𝑛 =

𝜔

𝜋
∫ 𝑥1

3 sin 𝑛𝜔𝑡 d𝑡
2𝜋/𝜔

0
.                  (7) 

In this study, the first-, second- and third-order Fourier coefficients are obtained, 

which refer to the three frequency components 𝜔, 3𝜔 and 5𝜔. Details of the calculations 

results are provided in the Appendix A. By substituting all related terms in Eq. (1) using 

Eqs (2)-(6), we obtain 

𝑚𝑗𝜔2 ∑ (−𝑛2𝑥𝑗,2𝑛−1 cos 𝑛𝜔𝑡 − 𝑛2𝑥𝑗,2𝑛 sin 𝑛𝜔𝑡)𝑁
𝑛=1 + (∑ (𝑥𝑗,2𝑛−1 cos 𝑛𝜔𝑡 +𝑁

𝑛=1

𝑥𝑗,2𝑛 sin 𝑛𝜔𝑡) − ∑ (𝑥𝑗−1,2𝑛−1 cos 𝑛𝜔𝑡 + 𝑥𝑗−1,2𝑛 sin 𝑛𝜔𝑡)𝑁
𝑛=1 )𝑘𝑗 +

(𝜔 ∑ (−𝑛𝑥𝑗,2𝑛−1 sin 𝑛𝜔𝑡 + 𝑛𝑥𝑗,2𝑛 cos 𝑛𝜔𝑡)𝑁
𝑛=1 − 𝜔 ∑ (−𝑛𝑥𝑗−1,2𝑛−1 sin 𝑛𝜔𝑡 +𝑁

𝑛=1

𝑛𝑥𝑗−1,2𝑛 cos 𝑛𝜔𝑡))𝑐𝑗 − (∑ (𝑥𝑗+1,2𝑛−1 cos 𝑛𝜔𝑡 + 𝑥𝑗+1,2𝑛 sin 𝑛𝜔𝑡)𝑁
𝑛=1 −

∑ (𝑥𝑗,2𝑛−1 cos 𝑛𝜔𝑡 + 𝑥𝑗,2𝑛 sin 𝑛𝜔𝑡)𝑁
𝑛=1 )𝑘𝑗+1 − (𝜔 ∑ (−𝑛𝑥𝑗+1,2𝑛−1 sin 𝑛𝜔𝑡 +𝑁

𝑛=1



 

 

𝑛𝑥𝑗+1,2𝑛 cos 𝑛𝜔𝑡) − 𝜔 ∑ (−𝑛𝑥𝑗,2𝑛−1 sin 𝑛𝜔𝑡 + 𝑛𝑥𝑗,2𝑛 cos 𝑛𝜔𝑡)𝑁
𝑛=1 )𝑐𝑗+1 + 𝑓𝑗,nl −

𝑓𝑗,ex = 𝑀𝑗, 

(8) 

where 𝑀𝑗 is the solution error or residual at the j-th coordinate. Following the general 

procedure of the extended Galerkin method16, it requires that the residual be orthogonal 

to each expansion function over one excitation period, i.e., 2𝜋/𝜔. Therefore, the 

orthogonality condition of the residual function yields 

∫ 𝑀𝑗 cos 𝑛𝜔𝑡 d𝑡
2𝜋/𝜔

0
= 0 ,                                                   (9) 

∫ 𝑀𝑗 sin 𝑛𝜔𝑡 d𝑡
2𝜋/𝜔

0
= 0,                                                   (10) 

The integration operations of Eqs. (9) and (10) lead to 

−𝑚𝑗𝜔2𝑛2𝑥𝑗,2𝑛−1 + (𝑥𝑗,2𝑛−1 − 𝑥𝑗−1,2𝑛−1)𝑘𝑗 + (𝑥𝑗,2𝑛 − 𝑥𝑗−1,2𝑛)𝜔𝑛𝑐𝑗 − (𝑥𝑗+1,2𝑛−1 −

𝑥𝑗,2𝑛−1)𝑘𝑗+1 − (𝑥𝑗+1,2𝑛 − 𝑥𝑗,2𝑛)𝜔𝑛𝑐𝑗+1 + 𝐹𝑗,nl_c − 𝐹𝑗,ex = 0 ,                                (11) 

−𝑚𝑗𝜔2𝑛2𝑥𝑗,2𝑛 + (𝑥𝑗,2𝑛 − 𝑥𝑗−1,2𝑛)𝑘𝑗 + (−𝑥𝑗,2𝑛−1 + 𝑥𝑗−1,2𝑛−1)𝜔𝑛𝑐𝑗 − (𝑥𝑗+1,2𝑛 −

𝑥𝑗,2𝑛)𝑘𝑗+1 − (−𝑥𝑗+1,2𝑛−1 + 𝑥𝑗,2𝑛−1)𝜔𝑛𝑐𝑗+1 + 𝐹𝑗,nl_s = 0  ,                                  (12) 

where 𝐹𝑗,nl_c and 𝐹𝑗,nl_s are the nonlinear terms about the cosine and sine functions and 

𝐹𝑗,ex is the external force term after the integration, and they can be expressed as 

 𝐹𝑗,nl_c = {
𝑘nl𝑞2𝑛−1, when 𝑗 = 1
0, when 𝑗 > 1

, 𝐹𝑗,nl_s = {
𝑘nl𝑞2𝑛, when 𝑗 = 1
0, when 𝑗 > 1

, 𝐹𝑗,ex = {
𝑓, when 𝑗 = 1
0, when 𝑗 > 1

.        

(13) 

Note that Eqs. (11) and (12) are coupled nonlinear algebraic equations for the mass at the 

j-th coordinate with the truncated order n, where 1 ≤ 𝑗 ≤ 𝑄 and 1 ≤ 𝑛 ≤ 𝑁. For a 

generalized Q-DOF dynamical system with an N-th order approximation, the total 

equation numbers are 2QN. These nonlinear algebraic equations can be solved by the 

Newton-Raphson method based on a numerical continuation scheme26, 27. 



 

 

3. Results and discussion 

In this section, three case studies using the extended Galerkin method (EGM) are 

carried out, including the Duffing oscillator, a 2-DOF coupled system and a 3-DOF 

system. The first-, second- and third-order analytical results of each case are obtained and 

compared with the numerical Runge-Kutta method. It demonstrates the proposed method 

can be applied to multi-degree-of-freedom nonlinear vibrational systems with high 

accuracy and efficiency.  

3.1 Case study 1-the Duffing oscillator (𝑸 = 𝟏) 

A single-DOF oscillator is firstly considered with no constraints on the right. 

Therefore, the system is simplified to the Duffing oscillator28, and the corresponding 

equation of motion is given in Eq. (B.1) in the Appendix B. The third-order (considering 

three frequency components 𝜔, 3𝜔, and 5𝜔) and the first-order approximations based on 

the EGM are used to obtain the steady-state dynamic response of the Duffing oscillator, 

see details in the Appendix B. For cross-verification and comparison, numerical results 

are also obtained from the fourth-order Runge-Kutta (RK) method. Non-dimensional 

system parameters are set as 𝑚1 = 1, 𝑐1 = 0.02, 𝑘1 = 1, 𝑘𝑛𝑙 = 0.1, 𝑓 = 0.5. 

Figure 2 shows the frequency-response curve of the single-DOF oscillator 

obtained by three different approaches. The dashed and solid lines denote the first- and 

third-order approximations, respectively. The symbols are the numerical results based on 

the fourth-order RK method with variable time step. Due to the hardening stiffness 

nonlinearity, the response amplitude curve bends to the high-frequency range causing the 

multi-solution behaviour and jump phenomenon. In a wide range of the excitation 

frequency, response amplitude curves of each method merge in Fig. 2, indicating that the 

results obtained by the proposed analytical method have a good agreement with the 

numerical solution. In the range of 0.32 < 𝜔 < 0.36, the steady-state dynamic response 



 

 

of the third-order approximation is firstly lower and then higher than the first-order 

results, while the numerical results and the third-order approximation are well-matched. 

The reason for the discrepancies is that the super-harmonic occurs in this region, which 

introduces an additional frequency component 3𝜔 in dynamic response. Therefore, the 

first-order approximation is insufficient to obtain the accurate response characteristics in 

this area and high-order approximation is required.   

Figure 3 presents the frequency spectra and time history information in the super-

harmonic region at a prescribed excitation frequency 𝜔 = 0.3414. Fig. 3(a) shows that 

there are two frequency components 𝜔 and 3𝜔 in the displacement motion, and the 

response is dominated by the fundamental excitation frequency 𝜔𝑟 = 𝜔. In Fig. 3(b), the 

time histories of the three methods are presented. The samples are selected from time 𝑡 =

800𝑇 to 𝑡 = 804𝑇 with four periodic cycles, where 𝑇 is one excitation period and 𝑇 =

2𝜋/𝜔. Fig. 3(b) shows that the periodic time histories of the numerical and the third-

order approximations are almost identical, which are slightly higher than the first-order 

results. It should be pointed out that the second-order approximations (considering two 

frequency components 𝜔 and  3𝜔) would also match well with the numerical results. The 

main reason is that there is no frequency component of 𝜔𝑟 = 5𝜔 and the corresponding 

Fourier coefficients 𝑥1,9 and 𝑥1,10 are omitted. 



 

 

 

Figure 2. Frequency-response curve of a single-DOF nonlinear system with different methods: Runge-

Kutta (symbols), third-order EGM (solid line) and first-order EGM (dashed line).  

 

Figure 3. Dynamic response of the single-DOF system when super-harmonic occurs at the excitation 

frequency 𝜔 = 0.3414 of (a) frequency spectra and (b) time history. 

3.2 Case study 2-a two-DOF coupled system (𝑸 = 𝟐) 

In this section, a 2-DOF (i.e., 𝑄 = 2) nonlinear vibration system is considered29,30. 

Thus, the generalised equation of motion can be transformed into Eqs. (C.1) and (C.2) in 

the Appendix C. The third-order approximations with frequency components 𝜔, 3𝜔 and 

5𝜔 are used. The first- and second-order approximations as well as the numerical 

integration results are also added for comparison, see more details in the Appendix C. 



 

 

Dimensionless system parameters are set as: 𝑚1 = 𝑚2 = 1, 𝑐1 = 𝑐2 = 𝑐3 = 0.02, 𝑘1 =

𝑘2 = 𝑘3 = 1, 𝑘𝑛𝑙 = 1, 𝑓 = 1. 

Figure 4 shows the steady-state response amplitudes of masses one and two, 

respectively. The third-, second- and first-order results of EGM are denoted by solid, 

dashed and dotted lines, respectively. Due to the hardening stiffness, both the primary 

and the secondary resonant peaks twist to the high-frequency range. In the frequency 

range of 0.2 to 0.7, there are three super-harmonic resonant peaks, which are located at 

𝜔 = 0.221, 0.384 and 0.618, respectively, resulting in the differences between the 

methods. In the region around the second (𝜔 = 0.384) and the third (𝜔 = 0.618) super-

harmonic peaks in Figure 4, the results obtained by the second-order approximations have 

a good agreement with the numerical results, but they are inconsistent near the first (𝜔 =

0.221) super-harmonic peak. In comparison, the third-order approximations are still 

compatible with the numerical RK results. It suggests that there may exists high-order 

frequency component, e.g., 𝜔𝑟 = 5𝜔. In the high-frequency range, lines of each approach 

merge, and the response amplitude decreases as the excitation frequency increases.  

Figures 5(a) and (b) explores the frequency spectra and the time history behaviour 

of the displacement 𝑥1 around the first super-harmonic peak at the excitation frequency 

𝜔 = 0.221. Figure 5(a) shows that there are two super-harmonic response components at 

𝜔𝑟 = 3𝜔 and 𝜔𝑟 = 5𝜔 as well as a primary one at 𝜔𝑟 = 𝜔. It is also noted that the 

response amplitude has a much lower level at the frequency components of 𝜔𝑟 = 3𝜔 

compared with that of the fundamental frequency and 𝜔𝑟 = 5𝜔. Therefore, the effects of 

the frequency component 𝜔𝑟 = 3𝜔 on the dynamic response are negligible, and the 

dynamic response of 𝑥1 is dominated by the fundamental frequency 𝜔𝑟 = 𝜔 in this 

region. This is the reason for the sinusoidal movement of the second-order results in 

Figure 5(b), as denoted by the dotted line. Figure 5(b) also shows the steady-state 



 

 

displacement motions within four periodic cycles obtained by different methods. It 

demonstrates that the proposed method with the third-order approximation still has a good 

agreement with the numerical RK results in the 2-DOF coupled system. 

 

Figure 4. Frequency-response curve of (a) mass one and (b) mass two of the 2-DOF vibration system. 

Symbols: RK. Solid lines: third-order EGM. Dashed lines: second-order EGM. Dotted lines: first-order 

EGM.  

 

Figure 5. Dynamic response of the two-DOF system when super-harmonic occurs at the excitation 

frequency 𝜔 = 0.221 of (a) frequency spectra and (b) time history. 

3.3 Case study 3-a three-DOF coupled system (𝑸 = 𝟑) 

In this section, a 3-DOF vibration system is considered17, and the corresponding 

governing equations and the analytical expressions of steady-state solutions with different 

orders of approximations are presented in the Appendix D. Dimensionless system 



 

 

parameters are set as: 𝑚1 = 𝑚2 = 𝑚3 = 1, 𝑐1 = 𝑐2 = 𝑐3 = 𝑐4 = 0.02, 𝑘1 = 𝑘2 = 𝑘3 =

𝑘4 = 1, 𝑘𝑛𝑙 = 0.5, 𝑓 = 1. 

Figure 6(a) and (b) shows the response amplitude of 𝑥1 and 𝑥3, respectively. Since 

it is a three-degree of freedom nonlinear dynamical system, there are at least three 

resonant peaks in the frequency-response curve, and all of which bend to the high-

frequency range. In the excitation frequency range of 0.1 to 0.7, five different super-

harmonic peaks are distinguished using the third-order approximation using EGM (i.e., 

solid lines) and numerical RK method (i.e., circle symbols), which are located at 𝜔 =

0.162, 0.271, 0.298, 0.504 and 0.642, respectively. In comparison, the results obtained 

by the second-order approximation (i.e., dashed lines) only show the second (𝜔 =

0.271), the fourth (𝜔 = 0.504) and the fifth (𝜔 = 0.642) super-harmonic peaks. It 

indicates that the first (𝜔 = 0.162) and the third peaks (𝜔 = 0.298) can contain high-

order frequency components, causing an underestimation of the second-order 

approximation compared with other results. In the high-frequency range, lines of each 

case merge. The reason is that the displacement amplitudes of the masses are small at 

higher frequencies, so that the effects of the stiffness nonlinearity are negligible. 

 



 

 

Figure 6. Frequency-response curve of (a) mass one and (b) mass three of the 3-DOF vibration system. 

Symbols: RK. Solid lines: third-order EGM. Dashed lines: second-order EGM. Dotted lines: first-order 

EGM 

Figure 7(a) and (b) shows the frequency spectra and phase portrait of 𝑥1 around 

the first super-harmonic peak at the excitation frequency 𝜔 = 0.162, respectively. Figure 

7(a) shows that there are three frequency components, namely 𝜔𝑟 = 𝜔, 3𝜔 and 5𝜔. It is 

also noted that the primary frequency component 𝜔𝑟 = 𝜔 is dominant in this region, since 

its response amplitude value is much larger than the other two components. Figure 7(b) 

shows the phase portrait diagram of 𝑥1 in the steady-state condition obtained by the third-

order approximation and the RK method, where samples are extracted in time domain 

from 800T to 1200T and 𝑇 = 2𝜋/𝜔. Figure 7(b) indicates that the third-order 

approximation based on the extended Galerkin method yields an accurate response 

solution for a multi-DOF nonlinear dynamical system. 

 

Figure 7. (a) Frequency spectra and (b) phase portrait of mass one at the excitation frequency 𝜔 = 0.162 

4. Conclusion 

This study proposed an alternative procedure for the steady-state response 

solution based on the extended Galerkin method for a generalised multi-DOF nonlinear 

vibrational system. The proposed method transformed the ordinary governing equation 



 

 

into a set of algebraic equations of response amplitudes through an integration of the 

weighted equations of motion containing the coupled products of trigonometric terms. 

This approach was applied to three different case studies with a third-order approximation 

and have demonstrated its high accuracy and high efficiency in derivation and 

computation, compared with the conventional harmonic balance method. It was found 

that the results obtained by the third-order approximation match well with the numerical 

Runge-Kutta results in both the frequency and time domains. It should also be pointed 

out that the proposed method can be easily extended to a high-DOF linear or nonlinear 

system for forced vibration analysis as well as free vibration analysis.   It is clear that the 

extended Galerkin method is a new and unique procedure, although equivalent to the 

harmonic balance method, for the approximate solutions of both linear and nonlinear 

problems of vibrations with a novel approach.  The procedure will also change the current 

formulation of analysis of structural vibrations with the finite element method.  It is also 

expected that the extended Galerkin and Rayleigh-Ritz methods will make these 

traditional techniques more capable for a unified analysis to vibration problems. 
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Appendix  

A- Formulations of Fourier coefficients of the nonlinear force 

Based on Eq. (7), the first-order Fourier coefficients of the nonlinear force are 

𝑞1 =
3

4
(𝑥1,1𝑥1,2

2 + 𝑥1,1
3 ),                                                   (A.1) 

𝑞2 =
3

4
(𝑥1,1

2 𝑥1,2 + 𝑥1,2
3 ),                                                   (A.2) 

The second-order coefficients (𝜔 and 3𝜔) of the nonlinear force are 

𝑞1 =
3

4
(𝑥1,1𝑥1,2

2 + 𝑥1,1
3 + (𝑥1,1

2 − 𝑥1,2
2 )𝑥1,5 + 2𝑥1,1𝑥1,2𝑥1,6 + 2(𝑥1,5

2 + 𝑥1,6
2 )𝑥1,1),                     (A.3) 

 𝑞2 =
3

4
(𝑥1,1

2 𝑥1,2 + 𝑥1,2
3 + (𝑥1,1

2 − 𝑥1,2
2 )𝑥1,6 − 2𝑥1,1𝑥1,2𝑥1,5 + 2(𝑥1,5

2 + 𝑥1,6
2 )𝑥1,2),                     (A.4) 

𝑞5 =
1

4
(𝑥1,1

3 − 3𝑥1,1𝑥1,2
2 + 6(𝑥1,1

2 + 𝑥1,2
2 )𝑥1,5 + 3𝑥1,5

3 + 3𝑥1,5𝑥1,6
2 ),                                       (A.5) 

𝑞6 =
1

4
(−𝑥1,2

3 + 3𝑥1,1
2 𝑥1,2 + 6(𝑥1,1

2 + 𝑥1,2
2 )𝑥1,6 + 3𝑥1,6

3 + 3𝑥1,5
2 𝑥1,6),                           (A.6) 

The third-order coefficients (𝜔, 3𝜔 and 5𝜔) of the nonlinear force are 

𝑞1 =
3

4
(𝑥1,1𝑥1,2

2 + 𝑥1,1
3 + (𝑥1,1

2 − 𝑥1,2
2 )𝑥1,5 + 2𝑥1,1𝑥1,2𝑥1,6 + 2(𝑥1,5

2 + 𝑥1,6
2 )𝑥1,1 +

𝑥1,9(𝑥1,5
2 − 𝑥1,6

2 + 2𝑥1,1𝑥1,5 − 2𝑥1,2𝑥1,6) + 2𝑥1,10(𝑥1,2𝑥1,5 + 𝑥1,1𝑥1,6 + 𝑥1,5𝑥1,6) +

2𝑥1,1(𝑥1,9
2 + 𝑥1,10

2 )),  (A.7) 

𝑞2 =
3

4
(𝑥1,1

2 𝑥1,2 + 𝑥1,2
3 + (𝑥1,1

2 − 𝑥1,2
2 )𝑥1,6 − 2𝑥1,1𝑥1,2𝑥1,5 + 2(𝑥1,5

2 + 𝑥1,6
2 )𝑥1,2 +

𝑥1,10(−𝑥1,5
2 + 𝑥1,6

2 + 2𝑥1,1𝑥1,5 − 2𝑥1,2𝑥1,6) + 2𝑥1,9(−𝑥1,2𝑥1,5 − 𝑥1,1𝑥1,6 + 𝑥1,5𝑥1,6) +

2𝑥1,2(𝑥1,9
2 + 𝑥1,10

2 )),  (A.8)  

𝑞5 =
1

4
(𝑥1,1

3 − 3𝑥1,1𝑥1,2
2 + 6(𝑥1,1

2 + 𝑥1,2
2 )𝑥1,5 + 3𝑥1,5

3 + 3𝑥1,5𝑥1,6
2 ) +

3

4
𝑥1,9(𝑥1,1

2 − 𝑥1,2
2 +

2𝑥1,1𝑥1,5 + 2𝑥1,2𝑥1,6) +
3

2
𝑥1,10(𝑥1,1𝑥1,2 − 𝑥1,2𝑥1,5 + 𝑥1,1𝑥1,6) +

3

2
𝑥1,5(𝑥1,9

2 + 𝑥1,10
2 ),                      

(A.9) 

𝑞6 =
1

4
(−𝑥1,2

3 + 3𝑥1,1
2 𝑥1,2 + 6(𝑥1,1

2 + 𝑥1,2
2 )𝑥1,6 + 3𝑥1,6

3 + 3𝑥1,5
2 𝑥1,6) +

3

4
𝑥1,10(𝑥1,1

2 −

𝑥1,2
2 + 2𝑥1,1𝑥1,5 + 2𝑥1,2𝑥1,6) +

3

2
𝑥1,9(−𝑥1,1𝑥1,2 + 𝑥1,2𝑥1,5 − 𝑥1,1𝑥1,6) +

3

2
𝑥1,6(𝑥1,9

2 + 𝑥1,10
2 ),                      (A.10) 



 

 

𝑞9 =
3

4
(𝑥1,1

2 𝑥1,5 − 𝑥1,2
2 𝑥1,5 − 2𝑥1,1𝑥1,2𝑥1,6 + 𝑥1,1𝑥1,5

2 − 𝑥1,1𝑥1,6
2 + 2𝑥1,2𝑥1,5𝑥1,6 +

𝑥1,9𝑥1,10
2 ) +

3

2
𝑥1,9(𝑥1,1

2 + 𝑥1,2
2 + 𝑥1,5

2 + 𝑥1,6
2 ) +

1

2
𝑥1,9

3 ,                          (A.11) 

𝑞10 =
3

4
(𝑥1,1

2 𝑥1,6 − 𝑥1,2
2 𝑥1,6 + 2𝑥1,1𝑥1,2𝑥1,5 − 𝑥1,2𝑥1,5

2 + 𝑥1,2𝑥1,6
2 + 2𝑥1,1𝑥1,5𝑥1,6 +

𝑥1,9
2 𝑥1,10) +

3

2
𝑥1,10(𝑥1,1

2 + 𝑥1,2
2 + 𝑥1,5

2 + 𝑥1,6
2 ) +

1

2
𝑥1,10

3 .                       (A.12) 

B- Formulations of the Duffing oscillator 

Here, a single-DOF oscillator is considered with no constraints on the right, i.e., 

𝑘𝑄+1 = 𝑐𝑄+1 = 0 and 𝑄 = 1. Therefore, the generalized vibration system of Eq. (1) is 

simplified to the Duffing oscillator as 

�̈�1 + 𝑐1�̇�1 + 𝑘1𝑥1 + 𝑘𝑛𝑙𝑥1
3 = 𝑓 cos 𝜔𝑡.                                                (B.1) 

The third-order approximations with frequency components 𝜔, 3𝜔 and 5𝜔 are used, 

i.e., 𝑁 = 5 and 𝑥1,3 = 𝑥1,4 = 𝑥1,7 = 𝑥1,8 = 𝑞3 = 𝑞4 = 𝑞7 = 𝑞8 = 0 (ignore the 

frequency components 2𝜔, 4𝜔 and its coefficients). Eqs. (11) and (12) become 

−𝑚1𝜔2𝑥1,1 + 𝜔𝑐1𝑥1,2 + 𝑘1𝑥1,1 + 𝑘𝑛𝑙𝑞1 = 𝑓,                                          (B.2) 

−𝑚1𝜔2𝑥1,2 − 𝜔𝑐1𝑥1,1 + 𝑘1𝑥1,2 + 𝑘𝑛𝑙𝑞2 = 0,                                   (B.3) 

 −9𝑚1𝜔2𝑥1,5 + 𝑘1𝑥1,5 + 3𝜔𝑐1𝑥1,6 + 𝑘𝑛𝑙𝑞5 = 0,                                      (B.4)                            

−9𝑚1𝜔2𝑥1,6 + 𝑘1𝑥1,6 − 3𝜔𝑐1𝑥1,5 + 𝑘𝑛𝑙𝑞6 = 0,                                (B.5) 

−25𝑚1𝜔2𝑥1,9 + 𝑘1𝑥1,9 + 5𝜔𝑐1𝑥1,10 + 𝑘𝑛𝑙𝑞9 = 0,                            (B.6) 

−25𝑚1𝜔2𝑥1,10 + 𝑘1𝑥1,10 − 5𝜔𝑐1𝑥1,9 + 𝑘𝑛𝑙𝑞10 = 0,                         (B.7) 

where 𝑞1, 𝑞2, 𝑞5, 𝑞6, 𝑞9 and 𝑞10 can be calculated by Eqs. (A.7)-(A.12), 

respectively. Note that Eqs. (B.2)-(B.7) are six nonlinear algebraic equations with six 

unknowns 𝑥1,1, 𝑥1,2, 𝑥1,5, 𝑥1,6, 𝑥1,9 and 𝑥1,10, which can be solved by Newton-Raphson 

based numerical continuation scheme. It is also found that the third-order solutions can 

be easily degraded to second-order and first-order approximations. By solving Eqs. (B.2)-

(B.5), we obtain the second-order approximate solutions where 𝑞1, 𝑞2, 𝑞5 and 𝑞6 can be 



 

 

calculated by Eqs. (A.3)-(A.6), respectively. Similarly, by solving Eqs. (B.2) and (B.3), 

the first-order solutions of the Duffing oscillator can be obtained, where 𝑞1 and 𝑞2 can be 

calculated by Eqs. (A.1) and (A.2), respectively. 

C- Formulations of the two-DOF system 

In this case, a 2-DOF (i.e., 𝑄 = 2) nonlinear vibration system is considered. Thus, 

the generalised governing Eq. (1) can be written as   

𝑚1�̈�1 + 𝑐1�̇�1 + 𝑘1𝑥1 + 𝑘𝑛𝑙𝑥1
3 − 𝑐2(�̇�2 − �̇�1)  − 𝑘2(𝑥2 − 𝑥1) = 𝑓 cos 𝜔𝑡 ,      (C.1)    

 𝑚2�̈�2 + 𝑐2(�̇�2 − �̇�1) + 𝑘2(𝑥2 − 𝑥1) + 𝑐3�̇�2 + 𝑘3𝑥2 = 0.                    (C.2) 

The formulations of the third-order approximations with frequency components 𝜔, 

3𝜔 and 5𝜔 are presented here, i.e., 𝑁 = 5 and 𝑥𝑗,3 = 𝑥𝑗,4 = 𝑥𝑗,7 = 𝑥𝑗,8 = 𝑞3 = 𝑞4 =

𝑞7 = 𝑞8 = 0 (𝑗 = 1 or 2, ignore the frequency components 2𝜔, 4𝜔 and its coefficients). 

Eqs. (11) and (12) become 

−𝑚1𝜔2𝑥1,1 + (𝑐1 + 𝑐2)𝜔𝑥1,2 − 𝑐2𝜔𝑥2,2 + (𝑘1 + 𝑘2)𝑥1,1 − 𝑘2𝑥2,1 + 𝑘𝑛𝑙𝑞1 − 𝑓 = 0, 

           (C.3) 

−𝑚1𝜔2𝑥1,2 − (𝑐1 + 𝑐2)𝜔𝑥1,1 + 𝑐2𝜔𝑥2,1 + (𝑘1 + 𝑘2)𝑥1,2 − 𝑘2𝑥2,2 + 𝑘𝑛𝑙𝑞2 = 0, 

 (C.4) 

−𝑚2𝜔2𝑥2,1 − 𝑐2𝜔𝑥1,2 − 𝑘2𝑥1,1 + (𝑐3 + 𝑐2)𝜔𝑥2,2 + (𝑘3 + 𝑘2)𝑥2,1 = 0, 

                              (C.5) 

−𝑚2𝜔2𝑥2,2 + 𝑐2𝜔𝑥1,1 − (𝑐2 + 𝑐3)𝜔𝑥2,1 − 𝑘2𝑥1,2 + (𝑘2 + 𝑘3)𝑥2,2 = 0, 

                      (C.6) 

−9𝑚1𝜔2𝑥1,5 + 3𝜔(𝑐1 + 𝑐2)𝑥1,6 + (𝑘1 + 𝑘2)𝑥1,5 − 3𝑐2𝜔𝑥2,6  − 𝑘2𝑥2,5 + 𝑘𝑛𝑙𝑞5 = 0, 

        (C.7) 

−9𝑚1𝜔2𝑥1,6 − 3𝜔(𝑐1 + 𝑐2)𝑥1,5 + (𝑘1 + 𝑘2)𝑥1,6 − 𝑘2𝑥2,6 + 3𝜔𝑐2𝑥2,5 + 𝑘𝑛𝑙𝑞6 = 0, 

            (C.8) 

−9𝑚2𝜔2𝑥2,5 − 𝑥1,5𝑘2 − 3𝜔𝑐2𝑥1,6 + 𝑥2,5(𝑘3 + 𝑘2) + 3𝜔(𝑐3 + 𝑐2)𝑥2,6 = 0 , 

                        (C.9) 

−9𝑚2𝜔2𝑥2,6 − 𝑥1,6𝑘2 + 3𝜔𝑐2𝑥1,5 + 𝑥2,6(𝑘3 + 𝑘2) − 3𝜔(𝑐3 + 𝑐2)𝑥2,5 = 0 , 

                   (C.10) 



 

 

−25𝑚1𝜔2𝑥1,9 + 5𝜔(𝑐1 + 𝑐2)𝑥1,10 + (𝑘1 + 𝑘2)𝑥1,9 − 5𝑐2𝜔𝑥2,10  − 𝑘2𝑥2,9 + 𝑘𝑛𝑙𝑞9 = 0, 

        (C.11) 

−25𝑚1𝜔2𝑥1,10 − 5𝜔(𝑐1 + 𝑐2)𝑥1,9 + (𝑘1 + 𝑘2)𝑥1,10 − 𝑘2𝑥2,10 + 5𝜔𝑐2𝑥2,9 + 𝑘𝑛𝑙𝑞10 = 0, 

 (C.12) 

−25𝑚2𝜔2𝑥2,9 − 𝑥1,9𝑘2 − 5𝜔𝑐2𝑥1,10 + 𝑥2,9(𝑘3 + 𝑘2) + 5𝜔(𝑐3 + 𝑐2)𝑥2,10 = 0, 

               (C.13) 

−25𝑚2𝜔2𝑥2,10 − 𝑥1,10𝑘2 + 5𝜔𝑐2𝑥1,9 + 𝑥2,10(𝑘3 + 𝑘2) − 5𝜔(𝑐3 + 𝑐2)𝑥2,9 = 0, 

      (C.14) 

where 𝑞1, 𝑞2, 𝑞5, 𝑞6, 𝑞9 and 𝑞10 can be obtained by Eqs. (A.7)-(A.12), respectively. It is 

found that Eqs. (C.3)-(C.14) are nonlinear algebraic equations with 12 unknowns, which 

can be solved by Newton-Raphson based numerical continuation scheme. It should also 

be pointed out that the second-order and the first-order approximations can be easily 

obtained from the third-order solutions. By solving Eqs. (C.3)-(C.10), we have the 

second-order approximate solutions where 𝑞1, 𝑞2, 𝑞5 and 𝑞6 can be calculated by Eqs. 

(A.3)-(A.6), respectively. The first-order solutions of the 2-DOF system can be obtained 

from Eqs. (C.3)-(C.6), where 𝑞1 and 𝑞2 are determined by Eqs. (A.1) and (A.2), 

respectively. 

D- Formulations of the three-DOF system 

In this section, a 3-DOF vibration system is considered (Q=3), and the corresponding 

governing equation can be written as   

𝑚1𝑥1̈ + 𝑐1𝑥1̇ + 𝑘1𝑥1 + 𝑓𝑛𝑙𝑥1
3 − 𝑘2(𝑥2 − 𝑥1) − 𝑐2(𝑥2̇ − 𝑥1̇) = 𝑓 cos 𝜔𝑡,          (D.1) 

𝑚2𝑥2̈ + 𝑘2(𝑥2 − 𝑥1) + 𝑐2(𝑥2̇ − 𝑥1̇) − 𝑘3(𝑥3 − 𝑥2) − 𝑐3(𝑥3̇ − 𝑥2̇) = 0,          (D.2) 

𝑚3𝑥3̈ + 𝑘3(𝑥3 − 𝑥2) + 𝑐3(𝑥3̇ − 𝑥2̇) + 𝑘4𝑥3 + 𝑐4𝑥3̇ = 0,                                  (D.3) 

The third-order approximations with frequency components 𝜔, 3𝜔 and 5𝜔 are 

considered here, i.e., 𝑁 = 5 and 𝑥𝑗,3 = 𝑥𝑗,4 = 𝑥𝑗,7 = 𝑥𝑗,8 = 𝑞3 = 𝑞4 = 𝑞7 = 𝑞8 = 0 (𝑗 =



 

 

1, 2 or 3, ignore the frequency components 2𝜔, 4𝜔 and its coefficients). Therefore, Eqs. 

(11) and (12) become 

−𝑚1𝜔2𝑥1,1 + (𝑐1 + 𝑐2)𝜔𝑥1,2 − 𝑐2𝜔𝑥2,2 + (𝑘1 + 𝑘2)𝑥1,1 − 𝑘2𝑥2,1 + 𝑘𝑛𝑙𝑞1 − 𝑓 = 0, 

     (D.4) 

−𝑚1𝜔2𝑥1,2 − (𝑐1 + 𝑐2)𝜔𝑥1,1 + 𝑐2𝜔𝑥2,1 + (𝑘1 + 𝑘2)𝑥1,2 − 𝑘2𝑥2,2 + 𝑘𝑛𝑙𝑞2 = 0, 

                 (D.5) 

−𝑚2𝜔2𝑥2,1 − 𝑐2𝜔𝑥1,2 + (𝑐2 + 𝑐3)𝜔𝑥2,2 − 𝑐3𝜔𝑥3,2 − 𝑘2𝑥1,1 + (𝑘2 + 𝑘3)𝑥2,1 − 𝑘3𝑥3,1 = 0, 

(D.6) 

−𝑚2𝜔2𝑥2,2 + 𝑐2𝜔𝑥1,1 − (𝑐2 + 𝑐3)𝜔𝑥2,1 + 𝑐3𝜔𝑥3,1 − 𝑘2𝑥1,2 + (𝑘2 + 𝑘3)𝑥2,2 − 𝑘3𝑥3,2 = 0, 

 (D.7) 

−𝑚3𝜔2𝑥3,1 − 𝑐3𝜔𝑥2,2 + (𝑐3 + 𝑐4)𝜔𝑥3,2 − 𝑘3𝑥2,1 + (𝑘3 + 𝑘4)𝑥3,1 = 0, 

                             (D.8) 

−𝑚3𝜔2𝑥3,2 + 𝑐3𝜔𝑥2,1 − (𝑐3 + 𝑐4)𝜔𝑥3,1 − 𝑘3𝑥2,2 + (𝑘3 + 𝑘4)𝑥3,2 = 0, 

                            (D.9) 

−9𝑚1𝜔2𝑥1,5 + 3(𝑐1 + 𝑐2)𝜔𝑥1,6 − 3𝑐2𝜔𝑥2,6 + (𝑘1 + 𝑘2)𝑥1,5 − 𝑘2𝑥2,5 + 𝑘𝑛𝑙𝑞5 = 0, 

           (D.10) 

−9𝑚1𝜔2𝑥1,6 − 3(𝑐1 + 𝑐2)𝜔𝑥1,5 + 3𝑐2𝜔𝑥2,5 + (𝑘1 + 𝑘2)𝑥1,6 − 𝑘2𝑥2,6 + 𝑘𝑛𝑙𝑞6 = 0, 

             (D.11) 

−9𝑚2𝜔2𝑥2,5 − 3𝑐2𝜔𝑥1,6 + 3(𝑐2 + 𝑐3)𝜔𝑥2,6 − 3𝑐3𝜔𝑥3,6 − 𝑘2𝑥1,5 + (𝑘2 + 𝑘3)𝑥2,5 − 𝑘3𝑥3,5 = 0, 

(D.12) 

−9𝑚2𝜔2𝑥2,6 + 3𝑐2𝜔𝑥1,5 − 3(𝑐2 + 𝑐3)𝜔𝑥2,5 + 3𝑐3𝜔𝑥3,5 − 𝑘2𝑥1,6 + (𝑘2 + 𝑘3)𝑥2,6 − 𝑘3𝑥3,6 = 0, 

 (D.13) 

−9𝑚3𝜔2𝑥3,5 − 3𝑐3𝜔𝑥2,6 + 3(𝑐3 + 𝑐4)𝜔𝑥3,6 − 𝑘3𝑥2,5 + (𝑘3 + 𝑘4)𝑥3,5 = 0, 

                   (D.14) 

−9𝑚3𝜔2𝑥3,6 + 3𝑐3𝜔𝑥2,5 − 3(𝑐3 + 𝑐4)𝜔𝑥3,5 − 𝑘3𝑥2,6 + (𝑘3 + 𝑘4)𝑥3,6 = 0, 



 

 

                       (D.15) 

−25𝑚1𝜔2𝑥1,9 + 5(𝑐1 + 𝑐2)𝜔𝑥1,10 − 5𝑐2𝜔𝑥2,10 + (𝑘1 + 𝑘2)𝑥1,9 − 𝑘2𝑥2,9 + 𝑘𝑛𝑙𝑞9 = 0, 

  (D.16) 

−25𝑚1𝜔2𝑥1,10 − 5(𝑐1 + 𝑐2)𝜔𝑥1,9 + 5𝑐2𝜔𝑥2,9 + (𝑘1 + 𝑘2)𝑥1,10 − 𝑘2𝑥2,10 + 𝑘𝑛𝑙𝑞10 = 0, 

(D.17) 

−25𝑚2𝜔2𝑥2,9 − 5𝑐2𝜔𝑥1,10 + 5(𝑐2 + 𝑐3)𝜔𝑥2,10 − 5𝑐3𝜔𝑥3,10 − 𝑘2𝑥1,9 + (𝑘2 + 𝑘3)𝑥2,9 − 𝑘3𝑥3,9 = 0,     

(D.18) 

−25𝑚2𝜔2𝑥2,10 + 5𝑐2𝜔𝑥1,9 − 5(𝑐2 + 𝑐3)𝜔𝑥2,9 + 5𝑐3𝜔𝑥3,9 − 𝑘2𝑥1,10 + (𝑘2 + 𝑘3)𝑥2,10 − 𝑘3𝑥3,10 = 0,     

(D.19) 

−25𝑚3𝜔2𝑥3,9 − 𝑥2,9𝑘3 − 5𝜔𝑐3𝑥2,10 + 𝑥3,9(𝑘3 + 𝑘4) + 5𝜔(𝑐3 + 𝑐4)𝑥3,10 = 0, 

         (D.20) 

−25𝑚3𝜔2𝑥3,10 − 𝑥2,10𝑘3 + 5𝜔𝑐3𝑥2,9 + 𝑥3,10(𝑘3 + 𝑘4) − 5𝜔(𝑐3 + 𝑐4)𝑥3,9 = 0, 

        (D.21) 

where 𝑞1, 𝑞2, 𝑞5, 𝑞6, 𝑞9 and 𝑞10 can be obtained from Eqs. (A.7)-(A.12), respectively. 

Eqs. (D.4)-(D.21) are the coupled nonlinear algebraic equations which yields the third-

order steady-state solutions. As mentioned in the previous sections, the third-order 

solutions can be degraded to the second-order and the first-order approximations. By 

solving Eqs. (D.4)-(D.15), the second-order approximation solutions are obtained where 

𝑞1, 𝑞2, 𝑞5 and 𝑞6 can be calculated by Eqs. (A.3)-(A.6), respectively. Similarly, From 

Eqs. (D.4)-(D.9), the first-order solutions of the 3-DOF system can be obtained, where 𝑞1 

and 𝑞2 are calculated by Eqs. (A.1) and (A.2), respectively. 

References 

1. Ilanko S, Monterrubio L, Mochida Y. The Rayleigh-Ritz Method for Structural Analysis. New 

York: Wiley; 2014. 

2. Jin G, Ye T, Su Z. Structural Vibration. Beijing: Science Press & Springer; 2015. 



 

 

3. Anderson D, Desaix M, Lisak M, Rasch J. Galerkin approach to approximate solutions of some 

nonlinear oscillator equations. Am. J. Phys. 2010; 78(9): 920-924. 

4. Nayfeh AH, Mook DT. Nonlinear Oscillations. New York: Wiley; 1979. 

5. He J. Variational approach for nonlinear oscillators. Chaos, Solitons & Fract. 2007; 34(5): 

1430-1439. 

6. Bayat M, Pakar I, Domairry G. Recent developments of some asymptotic methods and their 

applications for nonlinear vibration equations in engineering problems: A review. Lat. Am. J. 

Solids Stru. 2012; 9(2): 1-93. 

7. Urabe M. Galerkin’s procedure for nonlinear periodic systems. Arch Ration Mech Anal. 1965; 

20(2): 120–152.  

8. Urabe M, Reiter A. Numerical computation of nonlinear forced oscillations by Galerkin’s 

procedure. J. Math. Anal. Appl., 1966; 14(1): 107–140. 

9. Lau SL, Cheung YK. Amplitude Incremental Variational Principle for Nonlinear Vibration of 

Elastic Systems. J. Appl. Mech. 1981; 48(4): 959-964.  

10. Lau SL, Cheung YK, Wu SY. A Variable Parameter Incrementation Method for Dynamic 

Instability of Linear and Nonlinear Elastic Systems. J. Appl. Mech. 1982; 49(4): 849-853. 

11. Kim WJ, Perkins NC. Harmonic balance/Galerkin method for non-smooth dynamic systems. J. 

Sound Vib. 2003; 261(2): 213–224.  

12. Zhang Z, Ding H, Zhang YW, Chen LQ. Vibration suppression of an elastic beam with boundary 

inerter-enhanced nonlinear energy sinks. Acta Mech Sin. 2021; 37(3): 387–401.  

13. Dai W, Yang J, Shi B. Vibration transmission and power flow in impact oscillators with linear 

and nonlinear constraints. Int. J. Mech. Sci. 2019; 105234. 

14. Dai W, Yang J. Vibration transmission and energy flow of impact oscillators with nonlinear 

motion constraints created by diamond-shaped linkage mechanism. Int. J. Mech. Sci. 2020; 

106212. 

15. Dong Z, Shi B, Yang J, Li T. Suppression of vibration transmission in coupled systems with an 

inerter-based nonlinear joint. Nonlinear Dyn. 2021. https://doi.org/10.1007/s11071-021-06847-

9 

16. Wang J. The Extended Rayleigh-Ritz Method for an Analysis of Nonlinear Vibrations. Mech. 

Adv. Mater. Struct. 2021; 1-4.  

17. Liu X, Cammarano A, Wagg DJ, Neild SA, Barthorpe RJ. N - 1 modal interactions of a three-

degree-of-freedom system with cubic elastic nonlinearities. Nonlinear Dyn. 2015; 83(1-2): 497–

511.  

18. Kerschen G, Kowtko JJ, Mcfarland DM, Bergman LA, Vakakis AF. Theoretical and 



 

 

Experimental Study of Multimodal Targeted Energy Transfer in a System of Coupled 

Oscillators. Nonlinear Dyn. 2006; 47(1-3): 285–309.  

19. Song Y, Wen J, Yu D, Liu Y, Wen X. Reduction of vibration and noise radiation of an underwater 

vehicle due to propeller forces using periodically layered isolators. J. Sound Vib. 2014; 333(14): 

3031–3043.  

20. Liu N, Li C, Yin C, Dong X, Hua H. Application of a dynamic antiresonant vibration isolator to 

minimize the vibration transmission in underwater vehicles. J. Vib. Control. 2017; 24(17): 

3819–3829. 

21. Wang J, Zhang J, Yao Z, Yang X, Sun R, Zhao Y. Nonlinear characteristics of a multi-degree-

of-freedom spur gear system with bending-torsional coupling vibration. Mech Syst Signal 

Process. 2019; 121: 810–827. 

22. Yun Y, Li Y. A general dynamics and control model of a class of multi-DOF manipulators for 

active vibration control. Mech Mach Theory. 2011; 46(10): 1549–1574. 

23. Zhang SY, Jiang JZ, Neild S. Optimal configurations for a linear vibration suppression device 

in a multi-storey building. Struct Control Health Monit. 2016; 24(3): e1887. 

24. Shampine LF, Reichelt MW. The MATLAB ODE Suite. SIAM J Sci Comput.1997; 18: 1–22. 

25. Krack M, Gross J. Harmonic balance for nonlinear vibration problems. Springer, 2019. 

26. Keller HB. Numerical solutions of bifurcation and nonlinear eigenvalue problems, in 

Applications of Bifurcation Theory. Academic Press, 1977. 

27. Nayfeh AH, Balachandran B. Applied Nonlinear Dynamics: Analytical, Computational, and 

Experimental Methods. Wiley, 2008. 

28. Yang J, Xiong YP,  Xing JT. Nonlinear power flow analysis of the Duffing oscillator. Mech Syst 

Signal Process. 2014; 45(2): 563–578. 

29. Yang J, Shi, B, Rudd C. On vibration transmission between Interactive oscillators with nonlinear 

coupling interface. Int. J. Mech. Sci. 2018; 137: 238-251. 

30. Shi B, Yang J. Quantification of vibration force and power flow transmission between coupled 

nonlinear oscillators. Int. J. Dyn. Control. 2019; 8: 418-435. 


