5,563 research outputs found

    Experiment K-6-09. Morphological and biochemical investigation of microgravity-induced nerve and muscle breakdown. Part 1: Investigation of nerve and muscle breakdown during spaceflight; Part 2: Biochemical analysis of EDL and PLT muscles

    Get PDF
    The present findings on rat hindlimb muscles suggest that skeletal muscle weakness induced by prolonged spaceflight can result from a combination of muscle fiber atrophy, muscle fiber segmental necrosis, degeneration of motor nerve terminals and destruction of microcirculatory vessels. Damage was confined to the red adductor longus (AL) and soleus muscles. The midbelly region of the AL muscle had more segmental necrosis and edema than the ends. Macrophages and neutrophils were the major mononucleated cells infiltrating and phagocytosing the cellular debris. Toluidine blue-positive mast cells were significantly decreased in Flight AL muscles compared to controls; this indicated that degranulation of mast cells contributed to tissue edema. Increased ubiquitination of disrupted myofibrils may have promoted myofilament degradation. Overall, mitochondria content and SDH activity were normal, except for a decrease in the subsarcolemmal region. The myofibrillar ATPase activity shifted toward the fast type in the Flight AL muscles. Some of the pathological changes may have occurred or been exacerbated during the 2 day postflight period of readaptation to terrestrial gravity. While simple atrophy should be reversible by exercise, restoration of pathological changes depends upon complex processes of regeneration by stem cells. Initial signs of muscle and nerve fiber regeneration were detected. Even though regeneration proceeds on Earth, the space environment may inhibit repair and cause progressive irreversible deterioration during long term missions. Muscles obtained from Flight rats sacrificed immediately (within a few hours) after landing are needed to distinguish inflight changes from postflight readaptation

    Self Running Droplet: Emergence of Regular Motion from Nonequilibrium Noise

    Get PDF
    Spontaneous motion of an oil droplet driven by chemical nonequilibricity is reported. It is shown that the droplet undergoes regular rhythmic motion under appropriately designed boundary conditions, whereas it exhibits random motion in an isotropic environment. This study is a novel manifestation on the direct energy transformation of chemical energy into regular spatial-motion under isothermal conditions. A simple mathematical equation including noise reproduces the essential feature of the transition from irregularity into periodic regular motion. Our results will inspire the theoretical study on the mechanism of molecular motors in living matter, working under significant influence of thermal fluctuation.Comment: 4 pages, 4 figure

    The effect of pedunculopontine nucleus deep brain stimulation on postural sway and vestibular perception

    Get PDF
    © 2016 The Authors. European Journal of Neurology published by John Wiley & Sons Ltd on behalf of Europe an Academy of Neurology. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and re production in any medium, provided the original work is properly cited, see https://creativecommons.org/licenses/by/3.0/BACKGROUND AND PURPOSE: Deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) reduces the number of falls in patients with Parkinson's disease (PD). It was hypothesized that enhanced sensory processing contributes to this PPN-mediated gait improvement. METHODS: Four PD patients (and eight matched controls) with implanted bilateral PPN and subthalamic nucleus DBS electrodes were assessed on postural (with/without vision) and vestibular perceptual threshold tasks. RESULTS: Pedunculopontine nucleus ON stimulation (compared to OFF) lowered vestibular perceptual thresholds but there was a disproportionate increase in the normal sway increase on going from light to dark. CONCLUSIONS: The disproportionate increased sway with PPN stimulation in the dark may paradoxically improve balance function since mechanoreceptor signals rapidly adapt to continuous pressure stimulation from postural akinesia. Additionally, the PPN-mediated vestibular signal enhancement also improves the monitoring of postural sway. Overall, PPN stimulation may improve sensory feedback and hence balance performance.Peer reviewedFinal Published versio

    Performance, Nutrient Digestibility, and Meat Quality of Bali Cattle Fed a Ration Supplemented with Soybean Oil Calcium Soap and Cashew Fruit Flour

    Get PDF
    The study to evaluate growth performance, nutrient digestibility, blood metabolites profile and meat fatty acid of Bali cattle treated with 3 different types of rations were conducted using a completely randomized block design with 4 replications. Ration treatments were R1: 40% native grass (NG) + 60% concentrate, R2: 40% NG + 60% concentrate supplemented with 5% soybean oil calcium soap (SOCS), and R3: (40% NG + 60% concentrate supplemented with 5% SOCS + 10% cashew fruit flour (CFF). Variables measured were growth performance, nutrients digestibility, blood metabolites, and meat fatty acid profile. Data were analyzed using analysis of variance (ANOVA) and the differences between treatment means were examined by Duncan Multiple Range Test. Results of the study showed that the 3 different feed treatments did not have any significant effect on dry matter intake and organic matter intake, daily body weight gain, feed efficiency, crude fiber, ADF and NDF digestibilities, cholesterol, triglycerides, low density lipoprotein (LDL), high density lipoprotein (HDL), total fatty acid contents and content of unsaturated and saturated meat fatty  acids of Bali cattle meat. Different treatment rations also did not affect dry matter digestibility, however the treatments significantly affect the organic matter, crude protein, and fat digestibility (P<0.05). Bali cattle fed 5% SOCS (R2) and 5% SOCS + 10% CFF (R3) had higher organic matter and ether extract digestibilities and linoleic acid content of meat (P<0.05) compared with the control (R1). The Bali cattle fed with R1 and R2 had higher crude protein digestibility (P<0.05) compared with that of R3. It is concluded that the supplementation of 5% SOCS and 10% CFF in the ration improved the digestibility of organic matter, ether extract and linoleic fatty acids content in Bali cattle meat

    The structure of causal sets

    Get PDF
    More often than not, recently popular structuralist interpretations of physical theories leave the central concept of a structure insufficiently precisified. The incipient causal sets approach to quantum gravity offers a paradigmatic case of a physical theory predestined to be interpreted in structuralist terms. It is shown how employing structuralism lends itself to a natural interpretation of the physical meaning of causal sets theory. Conversely, the conceptually exceptionally clear case of causal sets is used as a foil to illustrate how a mathematically informed rigorous conceptualization of structure serves to identify structures in physical theories. Furthermore, a number of technical issues infesting structuralist interpretations of physical theories such as difficulties with grounding the identity of the places of highly symmetrical physical structures in their relational profile and what may resolve these difficulties can be vividly illustrated with causal sets.Comment: 19 pages, 4 figure

    The filtering equations revisited

    Full text link
    The problem of nonlinear filtering has engendered a surprising number of mathematical techniques for its treatment. A notable example is the change-of--probability-measure method originally introduced by Kallianpur and Striebel to derive the filtering equations and the Bayes-like formula that bears their names. More recent work, however, has generally preferred other methods. In this paper, we reconsider the change-of-measure approach to the derivation of the filtering equations and show that many of the technical conditions present in previous work can be relaxed. The filtering equations are established for general Markov signal processes that can be described by a martingale-problem formulation. Two specific applications are treated

    Black strings in asymptotically plane wave geometries

    Full text link
    We present a class of black string spacetimes which asymptote to maximally symmetric plane wave geometries. Our construction will rely on a solution generating technique, the null Melvin twist, which deforms an asymptotically flat black string spacetime to an asymptotically plane wave black string spacetime while preserving the event horizon.Comment: 15 pages; references adde

    D terms from D-branes, gauge invariance and moduli stabilization in flux compactifications

    Full text link
    We elucidate the structure of D terms in N=1 orientifold compactifications with fluxes. As a case study, we consider a simple orbifold of the type-IIA theory with D6-branes at angles, O6-planes and general NSNS, RR and Scherk-Schwarz geometrical fluxes. We examine in detail the emergence of D terms, in their standard supergravity form, from an appropriate limit of the D-brane action. We derive the consistency conditions on gauged symmetries and general fluxes coming from brane-localized Bianchi identities, and their relation with the Freed-Witten anomaly. We extend our results to other N=1 compactifications and to non-geometrical fluxes. Finally, we discuss the possible role of U(1) D terms in the stabilization of the untwisted moduli from the closed string sector.Comment: 1+31 pages, 1 figur

    A Note on D-brane - Anti-D-brane Interactions in Plane Wave Backgrounds

    Full text link
    We study aspects of the interaction between a D-brane and an anti-D-brane in the maximally supersymmetric plane wave background of type IIB superstring theory, which is equipped with a mass parameter mu. An early such study in flat spacetime (mu=0) served to sharpen intuition about D-brane interactions, showing in particular the key role of the ``stringy halo'' that surrounds a D-brane. The halo marks the edge of the region within which tachyon condensation occurs, opening a gateway to new non-trivial vacua of the theory. It seems pertinent to study the fate of the halo for non--zero mu. We focus on the simplest cases of a Lorentzian brane with p=1 and an Euclidean brane with p=-1, the D--instanton. For the Lorentzian brane, we observe that the halo is unaffected by the presence of non--zero mu. This most likely extends to other (Lorentzian) p. For the Euclidean brane, we find that the halo is affected by non-zero mu. As this is related to subtleties in defining the exchange amplitude between Euclidean branes in the open string sector, we expect this to extend to all Euclidean branes in this background.Comment: 14 pages, LaTeX, 2 eps figures. v2: a reference and some clarifying remarks added; v3: Considerably revised version; halo unaffected by plane wave background for Lorentzian branes, but Euclidean branes' halo is modifie
    corecore