27,724 research outputs found

    Electromagnetic wave energy conversion research

    Get PDF
    Known electromagnetic wave absorbing structures found in nature were first studied for clues of how one might later design large area man-made radiant-electric converters. This led to the study of the electro-optics of insect dielectric antennae. Insights were achieved into how these antennae probably operate in the infrared 7-14um range. EWEC theoretical models and relevant cases were concisely formulated and justified for metal and dielectric absorber materials. Finding the electromagnetic field solutions to these models is a problem not yet solved. A rough estimate of losses in metal, solid dielectric, and hollow dielectric waveguides indicates future radiant-electric EWEC research should aim toward dielectric materials for maximum conversion efficiency. It was also found that the absorber bandwidth is a theoretical limitation on radiant-electric conversion efficiency. Ideally, the absorbers' wavelength would be centered on the irradiating spectrum and have the same bandwith as the irradiating wave. The EWEC concept appears to have a valid scientific basis, but considerable more research is needed before it is thoroughly understood, especially for the complex randomly polarized, wide band, phase incoherent spectrum of the sun. Specific recommended research areas are identified

    Revised reference model for nitric acid

    Get PDF
    A nearly global set of data on the nitric acid distribution was obtained for seven months by the Limb Infrared Monitor of the Stratosphere (LIMS) experiment on the Nimbus 7 spacecraft. The evaluation of the accuracy, precision, and resolution of these data is described, and a description of the major features of the nitric acid distributions is presented. The zonal mean for nitric acid is distributed in a stratospheric layer that peaks near 30 mb, with the largest mixing ratios occurring in polar regions, especially in winter

    Probit models for capture-recapture data subject to imperfect detection, individual heterogeneity and misidentification

    Get PDF
    As noninvasive sampling techniques for animal populations have become more popular, there has been increasing interest in the development of capture-recapture models that can accommodate both imperfect detection and misidentification of individuals (e.g., due to genotyping error). However, current methods do not allow for individual variation in parameters, such as detection or survival probability. Here we develop misidentification models for capture-recapture data that can simultaneously account for temporal variation, behavioral effects and individual heterogeneity in parameters. To facilitate Bayesian inference using our approach, we extend standard probit regression techniques to latent multinomial models where the dimension and zeros of the response cannot be observed. We also present a novel Metropolis-Hastings within Gibbs algorithm for fitting these models using Markov chain Monte Carlo. Using closed population abundance models for illustration, we re-visit a DNA capture-recapture population study of black bears in Michigan, USA and find evidence of misidentification due to genotyping error, as well as temporal, behavioral and individual variation in detection probability. We also estimate a salamander population of known size from laboratory experiments evaluating the effectiveness of a marking technique commonly used for amphibians and fish. Our model was able to reliably estimate the size of this population and provided evidence of individual heterogeneity in misidentification probability that is attributable to variable mark quality. Our approach is more computationally demanding than previously proposed methods, but it provides the flexibility necessary for a much broader suite of models to be explored while properly accounting for uncertainty introduced by misidentification and imperfect detection. In the absence of misidentification, our probit formulation also provides a convenient and efficient Gibbs sampler for Bayesian analysis of traditional closed population capture-recapture data.Comment: Published in at http://dx.doi.org/10.1214/14-AOAS783 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Development of dispersion strengthened nickel-chromium alloy (Ni-Cr-ThO2) sheet for space shuttle vehicles, part 2

    Get PDF
    Two dispersion strengthened nickel base alloy systems were developed for use at temperatures up to 1204 C(2200 F); TD nickel chromium (TDNiCr) and TD nickel chromium aluminum (TDNiCrA1). They are considered candidate materials for use on the thermal protection systems of the space shuttle and for long term use in aircraft gas turbine engine applications. Improved manufacturing processes were developed for the fabrication of TDNiCr sheet and foil to specifications. Sheet rolling process studies and extrusion studies were made on two aluminum containing alloys: Ni-16%Cr-3.5%A1-2%ThO2 and Ni-16%Cr-5.0%A12%ThO2. Over 1600 kg.(3500 lb.) of plate, sheet, foil, bar and extrusion products were supplied to NASA Centers for technology studies

    Controls-structures-electromagnetics interaction program

    Get PDF
    A technology development program is described involving Controls Structures Electromagnetics Interaction (CSEI) for large space structures. The CSEI program was developed as part of the continuing effort following the successful kinematic deployment and RF tests of the 15 meter Hoop/Column antenna. One lesson learned was the importance of making reflector surface adjustment after fabrication and deployment. Given are program objectives, ground based test configuration, Intelsat adaptive feed, reflector shape prediction model, control experiment concepts, master schedule, and Control Of Flexible Structures-II (COFS-II) baseline configuration

    GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 2: User's manual and program listing

    Get PDF
    An efficient computer program, called GRID2D/3D, was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no modifications are needed in the grid generation part of the program. The theory and method used in GRID2D/3D is described

    Fine Structure of the 1s3p ^3P_J Level in Atomic ^4He: Theory and Experiment

    Full text link
    We report on a theoretical calculation and a new experimental determination of the 1s3p ^3P_J fine structure intervals in atomic ^4He. The values from the theoretical calculation of 8113.730(6) MHz and 658.801(6) MHz for the nu_{01} and nu_{12} intervals, respectively, disagree significantly with previous experimental results. However, the new laser spectroscopic measurement reported here yields values of 8113.714(28) MHz and 658.810(18) MHz for these intervals. These results show an excellent agreement with the theoretical values and resolve the apparent discrepancy between theory and experiment.Comment: 9 pages, 3 figure

    GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 1: Theory and method

    Get PDF
    An efficient computer program, called GRID2D/3D was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no modifications are needed in the grid generation part of the program. This technical memorandum describes the theory and method used in GRID2D/3D

    Slow epidemic extinction in populations with heterogeneous infection rates

    Get PDF
    We explore how heterogeneity in the intensity of interactions between people affects epidemic spreading. For that, we study the susceptible-infected-susceptible model on a complex network, where a link connecting individuals ii and jj is endowed with an infection rate βij=λwij\beta_{ij} = \lambda w_{ij} proportional to the intensity of their contact wijw_{ij}, with a distribution P(wij)P(w_{ij}) taken from face-to-face experiments analyzed in Cattuto et  al.et\;al. (PLoS ONE 5, e11596, 2010). We find an extremely slow decay of the fraction of infected individuals, for a wide range of the control parameter λ\lambda. Using a distribution of width aa we identify two large regions in the a−λa-\lambda space with anomalous behaviors, which are reminiscent of rare region effects (Griffiths phases) found in models with quenched disorder. We show that the slow approach to extinction is caused by isolated small groups of highly interacting individuals, which keep epidemic alive for very long times. A mean-field approximation and a percolation approach capture with very good accuracy the absorbing-active transition line for weak (small aa) and strong (large aa) disorder, respectively
    • …
    corecore