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 PROBIT MODELS FOR CAPTURE-RECAPTURE DATA SUBJECT

 TO IMPERFECT DETECTION, INDIVIDUAL HETEROGENEITY
 AND MISIDENTIFICATION1
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 Colorado Parks and Wildlifeand USGS Patuxent Wildlife Research Center§

 As noninvasive sampling techniques for animal populations have be
 come more popular, there has been increasing interest in the development
 of capture-recapture models that can accommodate both imperfect detection
 and misidentification of individuals (e.g., due to genotyping error). How
 ever, current methods do not allow for individual variation in parameters,
 such as detection or survival probability. Here we develop misidentification
 models for capture-recapture data that can simultaneously account for tem
 poral variation, behavioral effects and individual heterogeneity in parame
 ters. To facilitate Bayesian inference using our approach, we extend standard
 probit regression techniques to latent multinomial models where the dimen
 sion and zeros of the response cannot be observed. We also present a novel
 Metropolis-Hastings within Gibbs algorithm for fitting these models using
 Markov chain Monte Carlo. Using closed population abundance models for
 illustration, we re-visit a DNA capture-recapture population study of black
 bears in Michigan, USA and find evidence of misidentification due to geno
 typing error, as well as temporal, behavioral and individual variation in de
 tection probability. We also estimate a salamander population of known size
 from laboratory experiments evaluating the effectiveness of a marking tech
 nique commonly used for amphibians and fish. Our model was able to reli
 ably estimate the size of this population and provided evidence of individual
 heterogeneity in misidentification probability that is attributable to variable
 mark quality. Our approach is more computationally demanding than previ
 ously proposed methods, but it provides the flexibility necessary for a much
 broader suite of models to be explored while properly accounting for uncer
 tainty introduced by misidentification and imperfect detection. In the absence

 of misidentification, our probit formulation also provides a convenient and ef
 ficient Gibbs sampler for Bayesian analysis of traditional closed population
 capture-recapture data.
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 1. Introduction. Capture-recapture methods are commonly used to estimate
 demographic parameters for wildlife [e.g., Williams, Nichols and Conroy (2002)]
 and human [e.g., Yip et al. (1995a, 1995b)] populations. Passive (or "noninva
 sive") sampling techniques are becoming more common in capture-recapture stud
 ies, largely because these techniques can be less expensive and less invasive than
 the physical capture of animals [e.g., Karanth and Nichols (1998), Mackey et al.
 (2008), Ruell et al. (2009)]. Passive sampling techniques in capture-recapture
 studies include the use of photographs [Karanth and Nichols (1998), Langtimm
 et al. (1998), Mackey et al. (2008)], visual sightings [e.g., Hall, McConnell and
 Barker (2001), Kauffman, Frick and Linthicum (2003)] or genetic material [Dreher
 et al. (2007), Ruell et al. (2009)] to individually identify animals. When individual
 animals are identifiable by natural or artificial marks, these techniques can provide
 information about key demographic parameters such as abundance, survival and
 recruitment. They are therefore very useful for informing management decisions,
 as well as for testing ecological or evolutionary hypotheses.

 Unfortunately, use of passive sampling techniques in capture-recapture stud
 ies is not entirely without problems. For example, matching photographs to in
 dividuals can be prone to identification error due to variable image quality [e.g.,
 Bonner and Holmberg (2013), Hastings, Hiby and Small (2008), Link et al. (2010),
 McClintock et al. (2013a), Morrison et al. (2011)], and genetic samples (e.g., scat
 or hair) are susceptible to genotyping error [e.g., Dreher et al. (2007), Lukacs
 and Burnham (2005), Wright et al. (2009)]. Individual identifications from pho
 tographs, visual sightings or genetic samples are all susceptible to observer record
 ing error. Sampling designs can also result in differential exposures of individuals
 to sampling (e.g., due to home range behavior or opportunistic sampling). Such in
 dividual heterogeneity in detection probabilities can severely bias estimators and is
 a common culprit in the underestimation of abundance in capture-recapture stud
 ies.

 Link et al. (2010) recently developed a novel approach for the analysis of
 capture-recapture data when individual identification errors occur. This pioneer
 ing contribution focused on the closed population abundance model allowing for
 temporal variation in parameters [Darroch (1958), Otis et al. (1978)], and therefore
 does not accommodate individual-level variation in parameters, such as detection
 [e.g., Basu and Ebrahimi (2001), Coull and Agresti (1999), Fienberg, Johnson and
 Junker (1999), King and Brooks (2008), Manrique-Vallier and Fienberg (2008),
 Pledger (2000)] or survival [e.g., Gimenez and Choquet (2010), Royle (2008)]
 probability. Here, we develop models to simultaneously account for temporal vari
 ation, behavioral response (e.g., trap "happy" or "shy" effects), individual hetero
 geneity and misidentification in capture-recapture analyses. To facilitate Bayesian
 inference using our approach, we also extend standard probit regression data aug
 mentation techniques [e.g., Albert and Chib (1993)] to latent multinomial models
 where the dimension and zeros of the response cannot be observed.
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 2. Methods.

 2.1. Detailed problem description. Consider a "classic" capture-recapture
 study, where sampling is conducted over T sampling occasions and the identity of
 each animal is known with certainty when it is observed (i.e., there is no misidenti
 fication). When encounters are simple binary responses and T = 2, there are three
 possible recorded encounter histories for each individual: "11" (encountered on
 both occasions), "10" (encountered on the first occasion but not the second) and
 "01" (encountered on the second occasion but not the first). If the encounter history
 for animal i is denoted h;, a classic approach is to assume that h, is a realization
 from a multinomial process, where the probability of observing h, is a function of
 unknown demographic parameters (0) and (usually nuisance) parameters related
 to the observation process (p). For example, 0 might consist of survival probabil
 ities and p of detection probabilities. In this case, the number of unique animals
 encountered (n) is known with certainty, and when conditioning on first capture, a
 standard likelihood for capture-recapture data is proportional to

 tU Ln|</,/>j = I |rr(.n; |P, yoj,
 i=i

 where [h|0, />] denotes the conditional distribution for h given 0 and p. We note
 that "00" encounter histories are not observed, hence, additional modifications to
 equation (1) are needed to make inferences about individuals that are never en
 countered.

 In contrast to the preceding scenario, now consider the situation where individu
 als may be misidentified. When such errors can occur, three types of encounters for
 any of the T sampling occasions are possible. These include a nonencounter (de
 noted by "0"), a correctly identified encounter (denoted by "1") or a misidentified
 encounter (denoted by "2"). Misidentified encounters result in "ghost" encounter
 histories [Link et al. (2010), Yoshizaki (2007)], and an individual encountered in
 > 1 sampling occasion could therefore yield a number of possible recorded histo
 ries. For example, when presented with the recorded histories "10" and "01," we
 do not know whether these observations arose from the same animal seen on both

 occasions (latent histories "12," "21" or "22") or whether it was indeed two dif
 ferent animals each seen on one occasion (latent histories "10" and "01," "20" and
 "01," "10" and "02," or "20" and "02"). Under misidentification, encounter histo
 ries are not uniquely associated with animals, so equation (1) is no longer valid for
 making inferences about 0 and p.

 Assuming the same misidentification cannot occur more than once (i.e., a ghost
 cannot be detected more than once) and an encounter cannot be misidentified as
 a legitimate marked individual, Link et al. (2010) proposed a closed population
 abundance model allowing for temporal variation in detection probability under
 this misidentification scenario. In the next section, we generalize their approach to
 a much broader suite of misidentification models that can simultaneously accom
 modate temporal, behavioral and individual effects on 0 and p.
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 2.2. Accounting for individual heterogeneity and misidentification. Consider
 the marginal likelihood obtained by summing the "complete data likelihood" over
 all possible values of the latent encounter histories:

 (2) [f|0,/>] = £[h|0,/9][f|h,0,p],
 h

 where f is a vector of recorded history frequencies indicating the number of times
 each of the possible recorded histories was observed (see Table 1 for notation defi
 nitions). The complete data likelihood therefore derives from distributions [h|0, p]
 for latent capture-recapture data and distributions [f|h, 6, p] describing their con
 version to observed (potentially misidentified) data (see Table 2). We note that
 this extension is applicable to all sorts of capture-recapture models [e.g., those re
 viewed by Williams, Nichols and Conroy (2002)] and could apply to data subject
 to errors other than misidentification [e.g., incomplete mark observations sensu
 McClintock et al. (2013b)]. Evaluating equation (2) involves a multidimensional
 summation, thus making maximum likelihood estimation difficult. Link et al.
 (2010) averted this problem by adopting a Bayesian perspective and sampling from
 the posterior distribution using Markov chain Monte Carlo (MCMC), but their ap
 proach requires the assumption of no individual variation in 8 and p.

 We will for convenience refer to the latent and recorded histories using indices.
 With three possible latent encounter types (0, 1 and 2), the latent history for indi
 vidual i, h, = (hi i, hi2,..., h it ), is identified by

 T

 j = l + J2hit3t~\
 t= 1

 such that Hi = j indicates individual i has latent encounter history j. For exam
 ple, Hi = 16 for T = 3 indicates individual i has latent history h, =021, //, > 1
 indicates individual i was encountered at least once, and Pr(Hi = j) is the prob
 ability that individual i has latent history j. Similarly, a binary recorded history
 co = (toi, to2,..., toj) is identified by

 k = J2(°t2'~\
 t=l

 such that fk is the observed frequency of recorded history k.
 To implement our method, it is necessary to construct a matrix A, such that

 f = A'x, where the latent history frequency vector x has elements xj = £,■ l(H, =
 j) indicating the number of individuals with latent history j, and I(//, = j ) is an
 indicator function having the value 1 when Hi = j and 0 otherwise. The matrix A
 formally describes the relationship between the recorded and latent histories, and
 intuition about how A is constructed is best provided through a simple example.
 Suppose T = 3 for binary (i.e., detection, nondetection) recorded histories as in
 Table 2. The 3r x (27 — 1) matrix A for this example can be constructed from the



 PROBIT CAPTURE-RECAPTURE MISIDENTIFICATION MODELS 2465

 Table 1

 Definitions of parameters, latent variables, data and modeling constructs used in the latent
 multinomial model allowing misidentification with temporal, behavioral and individual-level
 variation in parameters. Note that bold symbols represent collections (vectors) of parameters

 Parameters Definition

 0 Vector of demographic process parameters (e.g., abundance or survival
 probability).

 p Vector of observation process parameters (e.g., encounter or misidentifica
 tion probability).

 Pit Probability that individual i is encountered at time t.

 a Probability that an individual, encountered at time t, is correctly identified.

 Latent variables

 h,- The latent encounter history for individual i, (hi j, /i;2,..., hjp).

 hit Encounter type for the latent encounter history of individual i at time t;
 hit — 0 represents no encounter, h;, = 1 a correctly identified encounter,
 and hit = 2 a misidentified encounter.

 H{ Latent encounter history index for individual i, such that Hi = j indicates
 individual i has latent history j. For hj, € {0, 1, 2} the 3T possible latent

 histories are identified by j = 1 + Y.J=\ hit3'~l (see Table 2).

 xj Latent frequency of encounter history j, where xj = Y.i Kfy = j). Note
 that x denotes a column vector of such frequencies, for example, x =
 (xi,x2,...,x3t)' forhu € {0,1,2}.

 Data

 T Number of sampling occasions.

 fk Frequency for recorded (observed) encounter history k. Note that f denotes
 a column vector of such frequencies, for example, f = (/j, f2,..., f2T
 fortuf € {0,1}.

 Modeling constructs

 a> Recorded encounter history, (^i, co2,..., ojj).

 a>t Observation type for a recorded history at time t; cot = 0 represents no de
 tection and u>t = 1 a detection. For u>t € {(). I j the 21 — 1 possible recorded
 histories are identified by k = cot2r_1 (see Table 2).

 C, Occasion of first capture for individual i. For example, Q = 3 if individual
 i has latent encounter history h, = 0021 (//, = 46).

 corresponding contributed records column in Table 2 by simply replacing each dot
 (.) with a 0 and any other entry with a 1. Thus, the rows of A correspond to the
 37 possible latent encounter histories and the columns correspond to the 2T — 1
 possible recorded histories. For example, the sixth row of A indicates that latent
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 Table 2

 Latent and recorded histories from marked individual encounters with T — 3 sampling occasions

 subject to misidentification. The probability of each latent history for individual i, Pr( W, = j), is for
 a closed population abundance model, where p\t is the probability that individual i is encountered

 at time t, and a is the probability that an individual, encountered at time t, is correctly identified.
 Contributed records column shows the recorded histories (k) arising from specific latent

 histories (j). For example, latent history 25, "022," gives rise to recorded histories "010" and
 "001 " (for which k = 2 and 4)

 Latent  Contributed  Recorded

 history  records  history
 j  (h,)  Pr (Ht=j)  (k from j)  k  M

 1  000  (1 - pn)(l - pnKi - Pii)  1  100

 2  100  Pi\a(\ - pi2)(l - pa)  1  2  010

 3  200  Pi\(l - u){\ - pi2){\ -p/3)  1  3  110

 4  010  (1 - Pi\)Pi2°t(l ~ Pil)  .2  4  001

 5  110  Pi\api2Ct{\ - Pi's)  ..3....  5  101

 6  210  Pi\{\-a)pi2a(l - pi3)  12  6  Oil
 7  020  (1 ~ Pi\)Pili\ ~ a)(l — P/3)  .2  7  111

 8  120  Pi\api2{\ — a)(l — Pii)  12

 9  220  Pi\(\ - a)pi2{\ - a)(l -Pi3)  12

 10  001  (1 -Pil)(l -pn)pm  ...4...

 11  101  Pi\a(l -Pi2)Pi3°t  ....5..

 12  201  p,l(l -a)(l -p/2)P/3«  1..4...

 13  Oil  (1 ~ Pi\)Pi2<*Pi3<x  6.

 14  111  Pi\api2api-ici  7

 15  211  Pi\{\ -a)pi2api3a  1....6.

 16  021  (1 ~Pi\)Pi2(l -a)P/3«  .2.4...

 17  121  Pi\api2(\ - a)pi2,a  .2..5..
 18  221  pn(\ -a)pi2(\ - a)pi3a  12.4...

 19  002  (l-Pil)(l-m)P/3(1-«)  ...4...

 20  102  p,ia(l - Pi2>Pi3(l -«)  LA

 21  202  Pi] G -a)(l - Pi2)P/3(l -«)  LA..

 22  012  (1 - P/l)P/2ap/3G -«)  .2.4...

 23  112  Pi\api2cep,3(l -a)  ..34...

 24  212  P/lO -a)P/2«Pi'3(l - a)  12.4...

 25  022  (1 - P/l)P/2U -a)Pi3(l -«)  .2.4...

 26  122  P/iap/20 -«)Pi3(l -«)  12.4...

 27  222  Pi] (1 -«)Pi2(l -a)Pi3(l ~«)  12.4...

 history 210 (J = 6) gives rise to the recorded histories 100 (k = 1) and 010 (k = 2)
 for binary recorded histories when T = 3.

 We treat the latent individual encounter histories as unobserved quantities (just
 like 6 and p) and use Bayesian analysis methods to evaluate the joint posterior
 distribution

 (3) [h, 0, /o|f] a [h|0, /)][f|h, 0, p][0, p],
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 where [f|h, 6, p] = I(A'x = f). We note that [f|h, 0, p] does not depend on $ or
 p\ the relation is deterministic rather than stochastic in the cases we consider
 here. One of the keys to sampling from equation (3) using MCMC is proposing
 latent history frequencies x that satisfy A'x = f. This is accomplished by utiliz
 ing basis vectors for the null space of A'. Once the A matrix is defined, a basis
 for the null space of A' can be determined by solving the system of equations
 A'x = 0. For binary recorded histories with T = 2, one such basis is the set of
 3t — 2t + 1 = 6 column vectors {v}, where vi = (1,0,0,0,0,0,0,0,0)', \2 =
 (o, -1, i, o, o, o, o, o, oy, V3 = (o, -1, o, -1, o, 1, o, o, oy, v4 = (o, o, o, -1, o,
 0,1,0,0)', V5 = (0, -1,0, -1,0,0,0,1,0)' and v6 = (0, -1,0, -1,0,0,0,0,1)'.

 When there is no individual heterogeneity in parameters, one may propose and
 update x from the set of basis vectors without explicit consideration of h, [Link
 et al. (2010)]. However, when allowing for individual heterogeneity, one must ex
 plicitly consider h, for each individual in the population. An efficient MCMC al
 gorithm therefore needs to regularly propose reasonable h, in combinations that
 satisfy A'x = f. As illustrated in Sections 2.2.1 and 2.2.2 for closed population
 abundance models, we accomplish this by apportioning each latent history fre

 quency xj to individuals with probabilities proportional to Pr{Hi — j).

 2.2.1. Model Mt^,h,a • For illustration, we now focus our efforts on extending
 the closed population capture-recapture model Mt$,h [King and Brooks (2008),
 Otis et al. (1978)], which estimates abundance (TV) assuming temporal variation,
 behavioral effects and individual heterogeneity in detection probabilities. Our ex
 tension includes all of these effects while accounting for misidentification; we
 denote this model as Mt,b,h,a- Before proceeding, we again note that our pro
 posed approach may be used for other capture-recapture models [e.g., Williams,
 Nichols and Conroy (2002)] by modifying them accordingly for misidentification;
 the mathematical form for the likelihood is simply substituted directly for
 [h|0, /o] in equation (3).

 We adopt a Bayesian perspective and utilize data augmentation both to account
 for individuals that were never detected [e.g., Royle, Dorazio and Link (2007)] and
 to formulate a probit model for detection probability [e.g., Albert and Chib (1993)].

 The data augmentation framework is useful because of computational efficiencies
 it produces, and our procedure treats A as a binomial random variable with known

 index M (typically M » A) and parameter xf/. In this context, M is often described

 as a "superpopulation" size of indicators qt ~ Bernoulli(i/0, where individuals
 with qi = 1 are considered "real individuals" or "individuals available for capture,"

 W

 and A = For the £ J=2xj individuals with A; > 1, we know qi — l. For

 the remaining M - xj individuals that were never detected, Hi — 1 and <y,
 is unknown. A closed population misidentification model allowing temporal and
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 individual variation in detection probability may then be represented as

 qi\xjj ~Bernoulli(ff),

 hit\qi, pu ~ Categorical(1 - qipu, aqipu, (1 - a)qipit)

 for hn G {0, 1,2}, where plt is the probability of detection for individual i at time t,

 and a is the probability that an individual is correctly identified, given detection.
 Because we assume N\ip- ~ Binomial (A/, i/0> a judicious choice of prior can yield
 the desired prior for N when marginalized over ijr. For example, ^ ~ Betafl, 1)
 produces a discrete uniform prior on N.

 As a more computationally efficient alternative to the ubiquitous logit link
 function for heterogeneous detection probabilities in Bayesian capture-recapture
 analyses [e.g., Castledine (1981), Fienberg, Johnson and Junker (1999), George
 and Robert (1992), King and Brooks (2008), Link (2013), Royle, Dorazio and
 Link (2007)], we use data augmentation to formulate a probit model, pu =
 <$>(v/'itß + yi), where is the standard normal cumulative distribution function,
 wu is a vector of covariates for individual i at time t, ß is a vector of regression
 coefficients, and Yi is an individual-level effect. Let yu = I (hit > 0) be an indi
 cator for the binary detection process, and let yu be a continuous latent version
 of this process, where yu\ß, Yi ~ N(Witß + y/, 1). Assuming yu = 1 if yu > 0
 and qi — 1, and assuming yu = 0 if yu < 0 and qi = 1 or qi = 0, then it follows
 that yu \qj, yu ~ Bernoulli(g,I(y;r > 0)). This approach shares some similarities
 with recent extensions of the probit regression model of Albert and Chib (1993)
 to imperfectly-detected species occurrence data [Dorazio and Rodriguez (2012),
 Johnson et al. (2013)], but our extension allows for individual-level effects and a
 response variable of unknown dimension.

 For our probit model allowing temporal, behavioral and individual effects in
 detection probability, we define w= (l(t = 1), Iff = 2),..., Iff = T), Iff > C;))
 and ß = (ß\, ß2,.. •, ßr+1), where C/ denotes the first capture occasion for in
 dividual i (with Ci = oo for individuals with Hi = 1). Given the recorded his
 tory frequencies f = (/i, /2, • • •, f2T~\), the joint posterior distribution for model
 Mt,b,h,a is then

 [h, q, y, ß, y, f, a, a^|f] a [h|q, y, a]I(A'x = f)

 (4) x [q\f]\j\ß, y][ß\fiß, T.ß][y\o^]
 x [ilr][a][<Ty\,

 where

 M T

 [h|q,y,a] a Y\{qi\{yu > 0)}1(/,">0){1 - qiliyu > 0)}I(/!"_0)
 1=1 ?=i
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 and

 x = (MM M \ E1^ = 1), E1^' =2). • • • ' E1^ = 2r) = (-^l'x2t ...,x3t).
 i = 1 i=1 i'=l /

 We complete our Bayesian formulation by assigning the priors

 ß\fiß, Yß~N{tiß, Tß),

 Yi\°y ~^V(0, CTy),

 a ~ Beta(aa,

 yfr ~Beta(af,bf),

 and (7y ~ r-1(ûo-,,, where fiß and are the prior mean and covariance
 matrix for ß. By choosing bf = 1 and a very small positive value for af, one
 can approximate the scale prior [N] oc l/N [Link (2013)]. We note that sim
 pler closed population abundance models may be specified by modifying model
 Mt,b,h,a accordingly. For example, set ßr+i = 0 to remove behavior effects, set
 ßi = ß2 = • • • = ßr to remove temporal variation, or set y; = 0 for i = 1,..., M
 to remove individual effects.

 Given the 37 x (2r — 1) matrix A for binary recorded histories and a set of
 basis vectors {v} = {vi, V2,..., v3r_27'+1} for the null space of A' (where vi is the
 basis vector corresponding to the all-zero latent history frequency), we propose the
 following MCMC algorithm for sampling from the posterior distribution of model
 Mt b.h,a [equation (4)]. We utilize Metropolis-Hastings updates for the latent en
 counter histories, but our judicious choice of priors enables Gibbs updates for q, y
 and all parameters:

 1. Initialize all parameters and latent variables, including an initial feasible set
 of M latent individual histories (h) with corresponding frequencies x satisfy
 ing A'x = f. One such initial vector x is readily available by assuming a = 1,
 such that latent frequencies corresponding to histories with 2's are zeros, with
 a one-to-one matching of the remaining latent frequencies with the recorded

 history frequencies (f). This creates J2k=\ fk individual histories (with cor
 responding Hi >1), none of which is the all-zero history. To complete the

 27" i
 initialization, assign x\ — M — 2lt= l fk individuals to the all-zero history
 (with corresponding Hi = 1).

 2. Update yu for i = 1,..., M and t = 1,..., T from the full conditional distri
 bution:

 TN{o,oo)Kr0 + Yi, 1), if hit > 0 and qt = 1,
 yit I TN (-oo ,o)(Witß + yi, 1), if hu = 0 and q{ = 1,

 N(Witß + Yi, 1), otherwise,
 where TN(itu) is a normal distribution truncated at L and U.
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 3. Update ß from the full conditional distribution:

 ß\. ~ Af((Tpl + W'W)"1 (Zßlnß + W'(y-Y® lr)), (ïj1 + WW

 where W is the MT x (T + 1) design matrix with rows w-, and \j is the
 all-ones vector of length T.

 4. Update y,- for i = 1,..., M from the full conditional distribution:

 ' I + Ta} ' 1 +
 5. Update a^ from the full conditional distribution:

 °y
 _,/ M YY\

 |-~T (alTy + -,b(Jy + —J.
 6. Update a from the full conditional distribution:

 M T M T

 a  (M T M T \ a" + £ £ = *>' b" + £ £l^' =2) ■
 i = l t=1 i=1 r=l /

 7. Update qi for the xj individuals with Hi = 1 from the full conditional distri
 bution by drawing from a Bernoulli distribution with probability

 ^nLiU-^C w-,0 + y/)}
 Pr(<?; = l|7/, = 1) =

 f n/=i(l - *(*/,/' + y,)} + (1 - Vr)

 8. Update xj/ from the full conditional distribution:

 M M

 (M M \ H + £4/> bf + M - I.
 i=i /=l /

 9. Update the set of M latent encounter histories (h) using a Metropolis
 nasuiigs siep.

 (a) Set H* = Hi for i = l,..., M and x* = x\. Randomly draw r
 from the integer set {2,..., 3r — 2 7 + 1} corresponding to basis vectors
 {V2,.. •, v3r_27'+i}. Next draw kr from a discrete uniform distribution over
 the integers {—Dr,..., — 1,1,..., Dr], where Dr is a tuning parameter. Pro
 pose a latent history frequency vector

 x* = x + kr\r.

 If any x* < 0 for j = 2,..., 3r or M — xj K 0. g°t0 steP 10
 (b) Apportion x* to individuals with probabilities proportional to Pr(//, =

 j). With probability 0.5, continue to step 9(b)(i) followed by step 9(b)(ii);
 otherwise proceed with step 9(b)(ii) followed by step 9(b)(i).
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 (i) For each x*: < xj (j = 2,.3T), draw a set {O/ } = {o\ ,o2
 o{ } of individuals (of size kr) without replacement from the xj individ Jjç j UI lilUiViUUdld (U1 olz<v tKf ) W ItllvUl 1 I llvlll tllv Àj

 uals with capture history j (i.e., H* = j) with respective probabilities I

 T

 PrW* = l) = ni1-<l>K^ + l'i)).
 /=!

 and set H* = 1 for individuals i e {Or }. After cycling through each j

 for which x* < xj (j = 2,3r), set x* — J2iL\ KH* — 1)

 (ii) For each x* > Xj (j — 2,..., 3r), draw a set {0/+} = {o{+, oJ2+,

 o]+} of individuals (of size kr) without replacement from the x* individ

 uals that were never captured with respective probabilities

 Pr <«,<• = ;) = n + y,)'w">0,{i - *«,/» + K)r"-0)
 t=1

 x^'d — a)1^2).

 Set H* = j and qf = 1 for individuals i € {Ol+{, and set xf —
 E,'=i I (H* = 1). Cycle through each j for which x* > xj (j — 2,

 M
 I

 (c) Propose q* for the x* individuals with H* = 1 as in step 7. Accept
 the proposed latent histories (i.e., set x = x*, Hi — H* and qi = q*) with
 probability min(l, Rr), where

 Rr =  n
 ■i:qf=1

 T

 y^pr (Hr=j)w=j)
 j=i

 n
 ■i:qi=1

 x [q*\iJ/][h\h*,ß,y,a][q\xl/,ß,y]J

 3r

 J2Pr(Hr = j)KHi=j)
 7=1

 x [q|^r][h*|h, ß, y, a][q*\xjs, ß, y]j,
 [h*|h, ß, y, a] is the proposal density for h*, and [q*|^, ß, y] is the proposal
 density for q*. Here, [h*|h, ß, y, a] is the product of the (ordered) condi
 tional inclusion probabilities, Pr(H** — 1 ) for i e [0Jr~] and Pr(H** = j) for

 i € {Or + }, that were, respectively, selected in steps 9(b)(i) and 9(b)(ii) under
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 unequal probability sampling without replacement [e.g., Thompson (1992),
 page 53]:

 [h*|h, ß, y, a]

 kr Pr {H**_ = 1)
 n n
 *• ,. »1 Si : H-J PKH" = 1 > - S£i = D J
 J J Um

 j> i

 kr Pr

 n n  oi ,j+

 l, : y>v, ,'J Si : h;=IP-J)-s;-j, Pr(H% = y)J J J ' °m

 j> 1

 and

 [h|h*,|8,y,a]
 ^ Pr(// *_ = y )

 n —^777^ *
 lj : ï*<xj; ;=1 Ei : ^=1 ^ = » " E£!i Pr<H*J~ = ». J J 1 °m

 j> i

 kr Pr(H** = 1)
 n n

 o
 7 +

 u; : x"j>xj \ ;=1 Ei : * = 1) - Em=l *(" % «». 1 J 1 Om J

 j> 1

 10. Return to step 2 and repeat as needed.

 Note that N is obtained by calculating N = E;=i <Ji at each iteration of the algo
 rithm.

 2.2.2. Model Mt^,ah- In some applications, one may be more concerned
 about individual heterogeneity in misidentification than detection probability. For
 example, the quality of visual identifiers (e.g., artificial marks, naturally occurring
 pelt or scar patterns) or genetic material (e.g., hair or fecal samples) may vary by
 individual [Lukacs and Burnham (2005)], and some individuals may therefore be
 more or less likely to spawn ghost histories (see Blue Ridge two-lined salaman
 der). We can modify model M, j, [King and Brooks (2008), Otis et al. (1978)] to
 accommodate temporal variation, behavioral effects and individual heterogeneity
 in correct identification probability, obtaining a model we call Mt b.ah •

 Similar to Section 2.2.1, we specify a probit model for the probability of cor
 rectly identifying an individual, given detection, a,- = <t> ( jia + £,), where jxa is an
 intercept term and £, is an individual-level effect. Let uu be an indicator for the
 binary correct identification process, and let üj, be a continuous latent version of
 this process, where ùu\iia, £,• ~H{ixa + £,-, 1). Assuming uu = 1 if w,-, > 0 and
 hu = L and assuming uu = 0 if wu < 0 and hu = 2 or hu = 0, then it follows that
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 uit\hit, üit ~ Bernoulli(I(/i,f > 0)1 {üu > 0)). The joint posterior distribution for
 model Mttb,ah is then

 [h, q, y, ü, ß, ßa, e, f, cr2|f] a [h|q, y, ü]I(A'x = f)

 (5) x [qlV][yl0][ü|Ma, e][ß\fiß, Vß][e|ct2]
 x [if][ßa][cre],

 where
 M T

 [h|q, y, ü] a f[ f][qiKyu > 0)}I(A">0){1 - qi\(yit > 0)}I(/!,'=0)
 i=i t=l

 I K^=i) x {l(hit >0)1(5/, >0)}'

 x {1 - l(hit > 0)l(uit > 0)}Ife=2),

 yit\ß ~ N(Witß, 1), and all other components of the model are specified as in Sec

 tion 2.2.1 for model Mt^,h,a- We assign the additional priors ßa ~ Äf(ßßa, cr2a),
 Si I or2 ~A/"(0, CT2), and ct2 ~ r~\aae, bffe).

 It is straightforward to modify the MCMC algorithm described in Section 2.2.1
 for sampling from the posterior distribution of model Mt^,ah [equation (5)]. The
 additional parameters and ü are simply updated from their full conditional distri
 butions:

 TN(0,oo)(ßa + Si, 1), if hit = 1,
 TTVt—oo.OiO^a "Hfi/, 1), if hit —2,

 M(ßa + Si, 1), otherwise,

 7/ 1 \-1 /u... m T
 ßa I '

 Mi/I"

 ei I • ~ Af

 and

 Ef=l Wit ~ ßce] el
 1 + Tej ' \ + To},

 al\
 -,/ M e'e\
 [aae + -,baE + — y

 The only other notable difference from our algorithm for model Mtib,h,a is that
 we instead use Pr( //** = 1) = 1 — Pr(H** = j) to propose individuals that were
 never detected in the step corresponding to 9(b)(i) above. This is because under
 model Mt:b,ah, all individuals have the same probability of never being detected.

 3. Example applications.

 3.1. Black bears of the Northern Lower Peninsula, Michigan, USA. In an im
 pressive field and analytical effort, Dreher et al. (2007) applied a closed popula
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 tion model that incorporates individual misidentification due to genotyping error
 [Lukacs and Burnham (2005)] to estimate black bear (Ursus americanus) abun
 dance in the Northern Lower Peninsula of Michigan, USA. DNA samples were
 collected from baited barbed wire hair snares on five occasions from 22 June

 26 July 2003. A sixth DNA sampling occasion occurred through the extraction of
 teeth and muscle tissue from bears registered during the recreational harvest in the
 autumn (hence, T = 6). In addition, a random sample of hand-pulled hair samples
 collected from harvested bears provided auxiliary information about the probabil
 ity of a genotyping error using hair-snare samples. Complete details of the data
 collection, genetic analysis and statistical analysis can be found in Dreher et al.
 (2007).

 Here we re-visit the DNA capture-recapture data of Dreher et al. (2007) using
 our closed population abundance model allowing for temporal variation, behav
 ioral effects, individual heterogeneity and misidentification (Section 2.2.1). Our
 motivation is twofold: (1) individual heterogeneity in detection from hair-snare
 samples was suspected by Dreher et al. (2007), but not incorporated into their
 misidentification model; and (2) the misidentification model proposed by Lukacs
 and Burnham (2005) relies on several assumptions that are unlikely to be met in
 practice and does not properly account for ghost capture histories that result from
 misidentification [Link et al. (2010), Yoshizaki (2007), Yoshizaki et al. (2011)].

 Based on the best-supported model from Dreher et al. (2007), we fit model
 Mhunt,b,h,a, which allows for different detection probabilities for the two methods
 of capture (i.e., hair snare or harvest; indicated by "hunt"), a behavioral response
 to the baited hair snares, individual heterogeneity in detection probability from
 hair-snare sampling, and misidentification of hair snare samples due to genotyping
 error. Allowing misidentification to occur only for the hair-snare sampling occa
 sions (t — 1 5). we have

 M  r 5

 [h|q, y, a] oc J~[
 i=i

 niwKÄ» > 0)}I(A">0){1 -qtKyu > 0)f""*>

 I(Ä„=1)/1 ™^I(^ir=2) x alw'=u(l -a)

 x (<7/Phunt) ,6(1 <?( /-'hunt) l6<

 Pif = ^(w'jjß + y/) for t = w,-, = (l,I(f > Ci)), ß = (yöi,yö2), and
 Phuntl^p» ~ Beta(öp, bp).

 The A matrix, posterior and MCMC algorithm described in Section 2.2.1
 are modified accordingly, where the reduced [2(3r~')] x (27 — 1) A matrix
 does not include misidentification for the harvest sampling occasion (t — 6),
 and phunt is updated from the full conditional distribution: phuntl- ~ Beta(ap +

 J2fL] lihiè, bp + <li (1 — his)). We used weakly informative priors by setting
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 Hß = 0 and T,ß = diag(10, 10), a^ = 10-6 and aay = bay = ap = bp = = 1.
 Based on the auxiliary data about genotyping error of hair samples collected from
 harvested bears (where 91 out of 95 samples were correctly assigned to genotype),
 we used an informative prior with aa = 91 and ba = 4. To investigate prior sensi
 tivity, we conducted an additional analysis using an uninformative prior on a by
 specifying aa = ba = 1.

 Our MCMC algorithm was written in the C programming language [Kernighan
 and Ritchie (1988)] with data pre- and post-processing performed in R via the .C
 interface [R Core Team (2012)]. Starting with Dr = 1 and rounding to the nearest
 integer, we tuned the MH sampler every 5000 iterations by multiplying or divid
 ing Dr by 0.95 if the acceptance rate for basis vector r was <0.44 or >0.44,
 respectively, where acceptance rates were calculated as the number of accepted
 moves divided by the number of attempted moves. After pilot tuning and bum-in
 of 500,000 iterations from overdispersed starting values, we obtained three chains
 of 10 million iterations for both analyses. With M = 5000, our analyses required
 about 48 hrs on a computer running 64-bit Windows 7 (3.4 GHz Intel Core i7 pro
 cessor, 16 Gb RAM). Slow mixing necessitated long runs, likely due to correlated
 parameters and low movement rates for the MH sampler. Similar to Link et al.
 (2010), low movement rates for the MH sampler resulted from many of the 486
 possible latent histories having very low probability. Chain convergence was as
 sessed by visual inspection and the Gelman-Rubin-Brooks (GRB) diagnostic in
 the R package CODA [Plummer et al. (2006)]. For both analyses, all univariate
 GRB diagnostics were <1.002 and the multivariate GRB diagnostic was 1.001 for

 monitored parameters (N, ß\, ßi, er?;, Phunt, «)• Based on sample autocorrelations, y '

 mixing was somewhat slower using the uninformative prior on a, but effective
 sample sizes exceeded 5000 for all parameters.

 Using the informative prior on a, we estimated posterior median N = 1945
 with a 95% credible interval (CI) of 1470-2681 (Figure 1). Similar to Dreher
 et al. (2007), we found evidence of a trap "happy" behavioral response to the
 baited hair snares, with posterior mean ß2 = 0.50 (95% CI = 0.08-0.89). Esti
 mates for phunt suggest about 21% of this population was harvested and reported
 to officials (Table 3). As suspected by Dreher et al. (2007), we found evidence
 of individual heterogeneity in detection from hair snares, with posterior median
 <7y = 0.63 (95% CI = 0.42-0.92). Because unmodeled individual heterogeneity
 tends to cause underestimation of abundance, this likely explains our posterior
 distribution for N having support at higher values than the original estimates us
 ing models that did not account for individual heterogeneity. For example, Dreher
 et al. (2007) estimated N = 1882 with a 95% confidence interval of 1389-2551 for

 model Mhunt,/? using the misidentification model proposed by Lukacs and Burnham
 (2005).

 We estimated posterior mean a = 0.95 (95% CI = 0.90-0.99), with slight ev
 idence of higher misidentification probabilities from the hair-snare samples than
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 a - Beta(91,4)
 a ~ Beta(1,1)
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 Fig. 1. Posterior distributions for abundance of black bears in the Northern Lower Peninsula
 of Michigan, USA, from DNA capture-recapture surveys conducted in summer and autumn 2003.
 Results are for analyses using an uninformative prior (light) and an informative prior (dark) on the
 probability of correctly identifying an individual, given detection (a).

 from the auxiliary hair samples collected from harvested bears (Figure 2). The
 auxiliary genotyping error data proved quite informative; the analogous analysis
 using an uninformative Beta(l, 1) prior on a yielded posterior median N = 1436
 (95% CI = 988-2203; Figure 1) and posterior mean a = 0.77 (95% CI = 0.61
 0.95; Figure 2). In the absence of prior information, the recorded histories may
 only provide minimal information about misidentification, such as the range of a
 for which there is very little support. Put another way, the frequencies of potential
 ghost histories alone suggest a > 0.55. If a were in fact <?C0.55, we would expect
 many more ghost histories to have been observed relative to the observed nonghost

 Table 3

 Posterior summaries and effective sample sizes (ESS) for model Mhum,b,h,a using black bear DNA
 capture-recapture data collected in the Northern Lower Peninsula of Michigan, USA in 2003. Mean

 capture and recapture probabilities were derived as p = + y)[y\cry] dy and
 c = f™oo +ß2 + y)[y\o-y]dy, respectively

 Parm.  Mean  Median  Mode  SD

 95%

 LCI  UCI  ESS

 N  1978.9  1945  1875  310.5  1470  2681  69,711
 P  0.02  0.02  0.02  0.00  0.01  0.03  89,171
 c  0.05  0.05  0.04  0.02  0.02  0.10  31,380
 Phunt  0.21  0.21  0.21  0.03  0.15  0.28  80,241
 a  0.95  0.96  0.96  0.02  0.90  0.99  11,107
 p i  -2.48  -2.46  -2.44  0.16  -2.84  -2.21  16,568
 02  0.50  0.51  0.53  0.21  0.08  0.89  55,550

 Oy  0.64  0.63  0.61  0.13  0.42  0.92  16,371
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 ■ a - Beta(91,4)
 □ a ~ Beta(1,1)

 —I 1 1 1—
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 Fig. 2. Posterior (solid lines) and prior (dashed lines) densities for the probability of correctly
 genotyping DNA hair-snare samples (a) collected from black bears in the Northern Lower Peninsula
 of Michigan, USA. Results are for analyses using an uninformative prior (light) and an informative
 prior (dark) on a.

 histories [see Section 4.1 in Link et al. (2010) for further discussion]. Neverthe
 less, when using the informative prior for a, we found relatively little contrary
 information about misidentification from the recorded histories. Given this prior
 sensitivity, care should be taken in specifying informative priors for a. For exam
 ple, there could be reason to suspect that hair samples collected from harvested
 bears are of higher quality than hair-snare samples (e.g., due to degradation by en
 vironmental factors), in which case hair-snare misidentification could potentially
 be underestimated (and abundance overestimated) from this prior.

 3.2. Blue Ridge two-lined salamanders. Bailey (2004) conducted a laboratory
 experiment evaluating the ability of observers to individually identify Blue Ridge
 two-lined salamanders (.Eurycea bislineata wilderae) marked with a subcutaneous
 injection of elastomer (a silicone-based material manufactured by Northwest Ma
 rine Technology, Inc., Shaw Island, Washington, USA). Out of a pool of 20 marked
 salamanders, each of 14 observers viewed 10 randomly chosen individuals. Two
 different lights were used for viewing the marks: a dive light with blue filter lens
 (hereafter blue light) and a deep blue 7-LED flashlight (hereafter black light). Ob
 servers first viewed each salamander with one light (randomly assigned), and then
 the 10 individuals were re-randomized and presented to the observers for identifi
 cation using the other light. Bailey (2004) found no difference in observer ability
 to correctly identify individuals based on the light used, but found mark quality
 strongly influenced observers' ability to correctly identify individuals. For exam
 ple, one individual salamander accounted for 10 of 15 misidentifications resulting
 from missed marks (because one of its marks was quite small).
 This laboratory experiment affords an opportunity to apply model Mt 0lh on
 a population of known size {N = 20) with no individual variation in detection
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 and suspected individual variation in misidentification probability. Although some
 ghosts were identified by multiple observers, here we analyze a subset of T = 8
 observers for which all ghost encounter histories contain a single detection and no
 identification errors matched a legitimate individual (thus satisfying these assump
 tions of the model). Because the true encounter history for each marked individual
 was known, recorded history data were simply generated from the true histories.
 For example, suppose an individual was presented to 4 of the 8 observers and, us
 ing the blue light, they recorded the true encounter history .12...21 (where a dot
 indicates this individual was not presented to the corresponding observer), then the
 blue light recorded histories spawned from this true encounter history would be
 01000001, 00100000 and 00000010. We performed separate analyses for the blue
 and black light recorded histories to examine potential differences in misidentifica
 tion probabilities, as well as our model's ability to accurately estimate the number
 of salamanders used in the experiment.

 Allowing for temporal variation in detection and individual variation in
 misidentification probability, we modify the posterior and MCMC algorithm de

 scribed in Section 2.2.2 accordingly. Setting pi, = pt and assuming pt\ap, bp ~
 Beta(ap, bp), pt can be updated from the full conditional distribution: pt |- ~
 Beta(ap + YaL\ ld(hit > 0), bp + YaL\ QiKhn = 0)). We used weakly infor
 mative priors by setting pßa = 0, a^a = 10, af = 10~6, and a„t = b„f = ap =
 bp — bf — 1.

 For both the blue and black light analyses, we obtained three chains of 10 mil
 lion iterations after initial pilot tuning and a bum-in of 500,000 iterations from
 overdispersed starting values. With M = 200, our analyses required about 2 hrs to
 complete. As in the black bear example, relatively slow mixing necessitated long
 runs, likely due to correlated parameters and low movement rates for the MH sam
 pler. For both analyses, all univariate GRB diagnostics were < 1.05 and the multi
 variate GRB diagnostic was < 1.008 for monitored parameters (A, pt, pa, af2, a). S ■

 Based on sample autocorrelations, mixing was somewhat slower for several pa
 rameters in the blue light analyses, but all effective sample sizes exceeded 8000
 for both analyses.

 For the blue light analysis, we found posterior median N = 20 with a 95%
 credible interval of 18-23. For the black light analysis, we found posterior me
 dian N — 21 (95% CI = 19-25) (Table 4). Hence, our model was able to reliably
 estimate N using either light source. As in Bailey (2004), we found misidentifica
 tion probabilities were similar for the blue and black lights, with posterior mean

 â = <b(/ra + s)[s\aj] de = 0.88 (95% CI = 0.74-0.97) and 0.88 (95% CI =
 0.76-0.97), respectively. We found some evidence of individual heterogeneity in
 misidentification probabilities attributable to variable mark quality, with posterior
 median as = 1.34 (95% CI = 0.54-4.51) and ae = 1.07 (95% CI = 0.50-3.45) for
 the blue and black lights, respectively.
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 Table 4

 Posterior summaries and effective sample sizes (ESS) for model Mtah using salamander data generated from laboratory experiments evaluating the
 effectiveness of a subcutaneously injected marking material with two light sources (blue and black). The population was of known size (N = 20) with 8

 total misidentifications (0-3 per individual) using the blue light and 9 total misidentifications (0-2 per individual) using the black light
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 4. Discussion. We have presented a general model formulation and MCMC
 model-fitting algorithm for capture-recapture models allowing for misidentifica
 tion and individual heterogeneity in parameters. Our approach is computationally
 more demanding than the closed population misidentification model proposed by
 Lukacs and Burnham (2005), implemented in Program MARK [White and Burn
 ham (1999)], that allows for individual heterogeneity in detection probability using
 a finite mixture distribution. However, Lukacs and Burnham (2005) do not prop
 erly account for misidentification [Link et al. (2010), Yoshizaki (2007), Yoshizaki
 et al. (2011)], and their approach performs particularly poorly when detection
 probabilities are too low (<0.1) or too high (>0.3), as well as when a < 0.95
 [Lukacs and Burnham (2005)]. The computational cost of our approach may there
 fore be worth the additional effort, but similar to Link et al. (2010), the computa
 tional demands of using basis vectors to propose x (and allocate h accordingly)
 can be impractical for large T. These computational demands can be somewhat
 reduced by eliminating basis vectors that will always produce negative latent his
 tory frequencies for a given f, but in the absence of gains in computing power, more
 efficient methods for evaluating equation (2) will likely be needed for T > 10.

 Owing to the complexity of the model, we found mixing to be relatively slow
 and recommend long runs when implementing our proposed MCMC algorithm.
 Other capture-recapture models of somewhat similar complexity have also ex
 hibited slow mixing that is likely due to correlated parameters [e.g., Bonner and
 Schofield (2013), Fienberg, Johnson and Junker (1999), Link (2013)] and low
 movement rates for the MH sampler [e.g., Link et al. (2010)]. Computational
 efficiency could potentially be improved by accounting for individual hetero
 geneity using observed or "semi-complete" data likelihoods in place of complete
 data likelihoods [Bonner and Schofield (2013), Fienberg, Johnson and Junker
 (1999), R. King, B. T. McClintock, D. Kidney and D. L. Borchers, unpublished
 manuscript]. Capture-recapture data tend to be somewhat sparse, and in applica
 tion many of the possible latent histories could have very low probability. Instead
 of drawing basis vectors with equal probability in step (a) of the algorithm de
 scribed in Section 2.2.1, movement rates of the MH sampler could potentially be
 improved by drawing r with probabilities proportional to those of the correspond
 ing latent histories proposed by each basis vector.

 Alternative models have been proposed for handling matching uncertainty in
 wildlife populations [e.g., Tancredi et al. (2013), Wright et al. (2009)] or "record
 linkage" in human populations [e.g., Tancredi and Liseo (2011)]. These ap
 proaches rely on auxiliary information, such as genotype or family name, to match
 recorded histories, but they do not account for individual heterogeneity in param
 eters. By integrating a simpler form of record linkage and individual heterogene
 ity into a unified missing data framework, our work constitutes a step toward the
 "grand synthesis" identified by Fienberg and Manrique-Vallier (2009) in the con
 text of multiple recapture estimation, but further development is needed to inte
 grate auxiliary information into the matching process.
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 To facilitate Bayesian inference using our approach, we extended standard pro
 bit regression techniques to latent multinomial models where both the dimension
 and zeros of the response are unobserved due to imperfect detection and misiden
 tification. We note that in the absence of misidentification (i.e., a = 1), our probit
 model provides a convenient Gibbs sampler for Bayesian analysis of traditional
 closed population capture-recapture data with heterogeneous detection probabili
 ties. By avoiding the need to tune proposal distributions, our probit formulation is
 potentially a more efficient alternative to traditional capture-capture models that
 rely on the logit link function to account for variability in detection probability
 or other parameters. However, we note that the logit link is sometimes desirable
 due to its ease of interpretation of the resulting odds-ratio; recent work by Poison,
 Scott and Windle (2013) could potentially be adapted to yield a Gibbs sampler for
 capture-recapture models using the logit link.

 Capture-recapture models are more robust to individual capture heterogene
 ity when absolute abundance is not the focal parameter [e.g., Williams, Nichols
 and Conroy (2002)]. In this case, it may be more sensible to focus on individ
 ual heterogeneity in demographic parameters, such as survival probability [e.g.,
 Gimenez and Choquet (2010), Royle (2008)]. A similarly-structured MCMC al
 gorithm to those described in Sections 2.2.1 and 2.2.2 can be employed for other
 capture-recapture models extended for misidentification, including open popula
 tion models, such as the Cormack-Jolly-Seber (CJS) and more recent multi-state
 formulations [e.g., Morrison et al. (2011), Pradel (2005)]. This is accomplished by
 substituting the desired form for the likelihood [h|0, /o] in equation (3) and assign
 ing corresponding priors for 6 and p. The proposal density [h*|h, 0, p] and the set
 of basis vectors [v] used to update h and x, respectively, will depend on the par
 ticular model and the relationship between recorded and latent histories (formally
 described by A).

 Bonner and Holmberg (2013) and McClintock et al. (2013a) recently developed
 methods for integrated analyses of multiple sources of capture-recapture data,
 such as those arising from photo and DNA records. The methods developed in this
 paper for incorporating parameter heterogeneity could be extended to these latent
 multinomial models as well. Covariates explaining individual heterogeneity in pa
 rameters [e.g., King, Brooks and Coulson (2008)] could also be accommodated.
 While we have generalized the approach of Link et al. (2010) to a broader suite of
 misidentification models, we have maintained several key assumptions that may
 not be reasonable for many passive sampling data sets (e.g., those based on visual
 sightings). Some challenging (but needed) extensions include the evolving mark
 problem examined by Yoshizaki et al. (2009), allowing for ghost histories to con
 sist of multiple encounters, and allowing identification errors to match legitimate
 individuals.
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