1,016 research outputs found

    On the survivability and detectability of terrestrial meteorites on the moon

    Get PDF
    Materials blasted into space from the surface of early Earth may preserve a unique record of our planet's early surface environment. Armstrong et al. (2002) pointed out that such materials, in the form of terrestrial meteorites, may exist on the Moon and be of considerable astrobiological interest if biomarkers from early Earth are preserved within them. Here, we report results obtained via the AUTODYN hydrocode to calculate the peak pressures within terrestrial meteorites on the lunar surface to assess their likelihood of surviving the impact. Our results confirm the order-of-magnitude estimates of Armstrong et al. (2002) that substantial survivability is to be expected, especially in the case of relatively low velocity (ca. 2.5 km/s) or oblique (≤45°) impacts, or both. We outline possible mechanisms for locating such materials on the Moon and conclude that searching for them would be a scientifically valuable activity for future lunar exploration

    Monkey-based Research on Human Disease: The Implications of Genetic Differences

    Get PDF
    Assertions that the use of monkeys to investigate human diseases is valid scientifically are frequently based on a reported 90–93% genetic similarity between the species. Critical analyses of the relevance of monkey studies to human biology, however, indicate that this genetic similarity does not result in sufficient physiological similarity for monkeys to constitute good models for research, and that monkey data do not translate well to progress in clinical practice for humans. Salient examples include the failure of new drugs in clinical trials, the highly different infectivity and pathology of SIV/HIV, and poor extrapolation of research on Alzheimer’s disease, Parkinson’s disease and stroke. The major molecular differences underlying these inter-species phenotypic disparities have been revealed by comparative genomics and molecular biology — there are key differences in all aspects of gene expression and protein function, from chromosome and chromatin structure to post-translational modification. The collective effects of these differences are striking, extensive and widespread, and they show that the superficial similarity between human and monkey genetic sequences is of little benefit for biomedical research. The extrapolation of biomedical data from monkeys to humans is therefore highly unreliable, and the use of monkeys must be considered of questionable value, particularly given the breadth and potential of alternative methods of enquiry that are currently available to scientists

    Larval mortality rates and population dynamics of Lesser Sandeel (Ammodytes marinus) in the northwestern North Sea

    Get PDF
    Intense fishing of a stock of sandeels (Ammodytes marinus) on the sand banks off the Firth of Forth, northeast Scotland, during the 1990s led to a decline in catch per unit effort to uneconomic levels and collateral failures of piscivorous seabird breeding success at nearby colonies. A prohibition on fishing in 1999 was followed by a short-term recovery of stock biomass, but then a sustained decline to very low levels of abundance. Demographic survey data show that despite the decline in stock, recruit abundance was maintained implying an increasing larval survival rate, and that the stock decline was not due to recruitment failure. To verify this hypothesis we analysed a 10-year long data set of weekly catches of sandeel larvae at a nearby plankton monitoring site to determine the patterns of larval mortality and dispersal. We found that the loss rate of larvae up to 20 d age decreased over time, corresponding with the trend in survival rate implied by the stock demography data. The pattern of loss rate in relation to hatchling abundance implied that mortality may have been density dependent. Our study rules out increased larval mortality as the primary cause of decline in the sandeel stock

    Bacterial Cell Enlargement Requires Control of Cell Wall Stiffness Mediated by Peptidoglycan Hydrolases.

    Get PDF
    Most bacterial cells are enclosed in a single macromolecule of the cell wall polymer, peptidoglycan, which is required for shape determination and maintenance of viability, while peptidoglycan biosynthesis is an important antibiotic target. It is hypothesized that cellular enlargement requires regional expansion of the cell wall through coordinated insertion and hydrolysis of peptidoglycan. Here, a group of (apparent glucosaminidase) peptidoglycan hydrolases are identified that are together required for cell enlargement and correct cellular morphology of Staphylococcus aureus, demonstrating the overall importance of this enzyme activity. These are Atl, SagA, ScaH, and SagB. The major advance here is the explanation of the observed morphological defects in terms of the mechanical and biochemical properties of peptidoglycan. It was shown that cells lacking groups of these hydrolases have increased surface stiffness and, in the absence of SagB, substantially increased glycan chain length. This indicates that, beyond their established roles (for example in cell separation), some hydrolases enable cellular enlargement by making peptidoglycan easier to stretch, providing the first direct evidence demonstrating that cellular enlargement occurs via modulation of the mechanical properties of peptidoglycan. IMPORTANCE: Understanding bacterial growth and division is a fundamental problem, and knowledge in this area underlies the treatment of many infectious diseases. Almost all bacteria are surrounded by a macromolecule of peptidoglycan that encloses the cell and maintains shape, and bacterial cells must increase the size of this molecule in order to enlarge themselves. This requires not only the insertion of new peptidoglycan monomers, a process targeted by antibiotics, including penicillin, but also breakage of existing bonds, a potentially hazardous activity for the cell. Using Staphylococcus aureus, we have identified a set of enzymes that are critical for cellular enlargement. We show that these enzymes are required for normal growth and define the mechanism through which cellular enlargement is accomplished, i.e., by breaking bonds in the peptidoglycan, which reduces the stiffness of the cell wall, enabling it to stretch and expand, a process that is likely to be fundamental to many bacteria

    Resonant Absorption as Mode Conversion?

    Full text link
    Resonant absorption and mode conversion are both extensively studied mechanisms for wave "absorption" in solar magnetohydrodynamics (MHD). But are they really distinct? We re-examine a well-known simple resonant absorption model in a cold MHD plasma that places the resonance inside an evanescent region. The normal mode solutions display the standard singular resonant features. However, these same normal modes may be used to construct a ray bundle which very clearly undergoes mode conversion to an Alfv\'en wave with no singularities. We therefore conclude that resonant absorption and mode conversion are in fact the same thing, at least for this model problem. The prime distinguishing characteristic that determines which of the two descriptions is most natural in a given circumstance is whether the converted wave can provide a net escape of energy from the conversion/absorption region of physical space. If it cannot, it is forced to run away in wavenumber space instead, thereby generating the arbitrarily small scales in situ that we recognize as fundamental to resonant absorption and phase mixing. On the other hand, if the converted wave takes net energy way, singularities do not develop, though phase mixing may still develop with distance as the wave recedes.Comment: 23 pages, 8 figures, 2 tables; accepted by Solar Phys (July 9 2010

    Supersymmetric Euler-Heisenberg effective action: Two-loop results

    Full text link
    The two-loop Euler-Heisenberg-type effective action for N = 1 supersymmetric QED is computed within the background field approach. The background vector multiplet is chosen to obey the constraints D_\a W_\b = D_{(\a} W_{\b)} = const, but is otherwise completely arbitrary. Technically, this calculation proves to be much more laborious as compared with that carried out in hep-th/0308136 for N = 2 supersymmetric QED, due to a lesser amount of supersymmetry. Similarly to Ritus' analysis for spinor and scalar QED, the two-loop renormalisation is carried out using proper-time cut-off regularisation. A closed-form expression is obtained for the holomorphic sector of the two-loop effective action, which is singled out by imposing a relaxed super self-duality condition.Comment: 27 pages, 2 eps figures, LaTeX; V2: typos corrected, comments and reference adde

    Can filesharers be triggered by economic incentives? Results of an experiment

    Get PDF
    Illegal filesharing on the internet leads to considerable financial losses for artists and copyright owners as well as producers and sellers of music. Thus far, measures to contain this phenomenon have been rather restrictive. However, there are still a considerable number of illegal systems, and users are able to decide quite freely between legal and illegal downloads because the latter are still difficult to sanction. Recent economic approaches account for the improved bargaining position of users. They are based on the idea of revenue-splitting between professional sellers and peers. In order to test such an innovative business model, the study reported in this article carried out an experiment with 100 undergraduate students, forming five small peer-to-peer networks.The networks were confronted with different economic conditions.The results indicate that even experienced filesharers hold favourable attitudes towards revenue-splitting.They seem to be willing to adjust their behaviour to different economic conditions

    Crystallization of the ordered vortex phase in high temperature superconductors

    Full text link
    The Landau-Khalatnikov time-dependent equation is applied to describe the crystallization process of the ordered vortex lattice in high temperature superconductors after a sudden application of a magnetic field. Dynamic coexistence of a stable ordered phase and an unstable disordered phase, with a sharp interface between them, is demonstrated. The transformation to the equilibrium ordered state proceeds by movement of this interface from the sample center toward its edge. The theoretical analysis dictates specific conditions for the creation of a propagating interface, and provides the time scale for this process.Comment: 8 pages and 3 figures; to be published in Phys. Rev. B (Rapid Communications section

    Spatial prediction of the concentration of selenium (Se) in grain across part of Amhara Region, Ethiopia

    Get PDF
    Grain and soil were sampled across a large part of Amhara, Ethiopia in a study motivated by prior evidence of selenium (Se) deficiency in the Region's population. The grain samples (teff, Eragrostis tef, and wheat, Triticum aestivum) were analysed for concentration of Se and the soils were analysed for various properties, including Se concentration measured in different extractants. Predictive models for concentration of Se in the respective grains were developed, and the predicted values, along with observed concentrations in the two grains were represented by a multivariate linear mixed model in which selected covariates, derived from remote sensor observations and a digital elevation model, were included as fixed effects. In all modelling steps the selection of predictors was done using false discovery rate control, to avoid over-fitting, and using an α-investment procedure to maximize the statistical power to detect significant relationships by ordering the tests in a sequence based on scientific understanding of the underlying processes likely to control Se concentration in grain. Cross-validation indicated that uncertainties in the empirical best linear unbiased predictions of the Se concentration in both grains were well-characterized by the prediction error variances obtained from the model. The predictions were displayed as maps, and their uncertainty was characterized by computing the probability that the true concentration of Se in grain would be such that a standard serving would not provide the recommended daily allowance of Se. The spatial variation of grain Se was substantial, concentrations in wheat and teff differed but showed the same broad spatial pattern. Such information could be used to target effective interventions to address Se deficiency, and the general procedure used for mapping could be applied to other micronutrients and crops in similar settings

    Experimental Study of the Shortest Reset Word of Random Automata

    Get PDF
    In this paper we describe an approach to finding the shortest reset word of a finite synchronizing automaton by using a SAT solver. We use this approach to perform an experimental study of the length of the shortest reset word of a finite synchronizing automaton. The largest automata we considered had 100 states. The results of the experiments allow us to formulate a hypothesis that the length of the shortest reset word of a random finite automaton with nn states and 2 input letters with high probability is sublinear with respect to nn and can be estimated as $1.95 n^{0.55}.
    corecore