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Introduction

Justification for the use of non-human animals in
biomedical experimentation rests on the assump-
tion that there exists sufficient general similarity
between each experimental species and humans, to
enable the reliable extrapolation of data from the
former to the latter. It is widely assumed, and
asserted by advocates of animal research, that
those similarities that exist are most pronounced
in non-human primates (NHPs) compared to other
non-human animals, given their relatively recent
evolutionary divergence from, and high degree of
genetic identity to, humans. Therefore, they argue,
NHPs must serve as the best models for research-
ing human biology, in cases where human subjects
cannot be used. However, in view of their high cog-
nitive and emotional capacities, and the greater
cost of their use in terms of ethics and resources,
NHPs are used in much lower numbers than, for
example, rats and mice. Indeed, the species with
the greatest similarity to humans of all — chim-
panzees — will cease to be used worldwide in inva-
sive research in the very near future, as a result of
ethical concerns coupled with a consensus that
chimpanzee use is not scientifically necessary (1). 

Nonetheless, the number of other NHPs used is
still considerable: in the USA, the latest published

figures (2) show that 71,317 NHPs were used in
research in the fiscal year 2010, with a further
54,435 NHPs housed in facilities, but not used
experimentally (total = 125,752). More-recent fig-
ures for 2012, available on the government database
(3), indicate that 64,067 NHPs were used in this fis-
cal year, with a further 43,149 housed, but not used
(total = 107,216). Elsewhere, more than 6,000 were
used across the EU Member States in 2011 (2), and
2,202 in the UK in 2013 (3). Where NHPs continue
to be used, it is claimed that their high degree of bio-
logical similarity to humans means that, in certain
circumstances, there is simply no alternative, and
that they are a last, but important, resort that offers
significant scientific advantages where no other
approach will suffice (e.g. 4, 5). Such advantages are,
it is argued, conferred by a genetic similarity
between NHPs and humans that is extremely high.
Chimpanzees are superficially 98–99% genetically
similar to humans, though more-stringent and
more-comprehensive evaluations put the figure
closer to 93% (6). Two of the monkey species most
commonly used in research, the rhesus monkey/
macaque (Macaca mulatta) and the cynomolgus
monkey/macaque (Macaca fascicularis, also known
as the long-tailed or crab-eating macaque) are mar-
ginally more dissimilar to humans: some analyses
suggest their similarity to humans is approximately
93%, though more rigorous comparisons put the fig-
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ure at around 90% or even lower (7). While, at first
sight, these similarity figures appear to be high, it is
becoming increasingly evident that those genetic dif-
ferences translate to profound biological differences
that make these species unsuitable and poorly rele-
vant models for humans, and/or which explain a
number of observed empirical differences (see
Discussion). 

These differences seem obvious when one consid-
ers the extraordinary diversity of the order of pri-
mates, which comprises 78 genera and 478 species,
including humans, and for which 66 new species
were identified in the past decade alone (8). It is
estimated that the primate lineage is approxi-
mately 63 million years old; that chimpanzees and
humans diverged 6–7.6 million years ago; that New
World monkeys (NWMs), such as marmosets,
tamarins, woolly monkeys and squirrel monkeys,
diverged around 31 million years ago; and that Old
World monkeys (OWMs), such as macaques,
baboons, green and vervet monkeys, diverged from
their common ancestor at least 14 million, though
possibly up to 35 million, years ago (9–13). Con -
sequently, lineage-specific differences, both in gene
sequences and in gene regulation, have had plenty
of time to occur and accrue. This may be evidenced,
for example, by distinct phenotypic differences
between species of monkey, even though they are
closely related (such as the rhesus and long-tailed
macaques): in fact, genetic variability among
regional populations of cynomolgus macaques sur-
passes that even of rhesus macaques, meaning that
they can “…differ from each other as much as some
species and are not always appropriate for use as
the same animal model” (14). Indeed, the difference
between Indonesian and Mauritian cynomolgus
macaques, in particular, is considered “remark-
able”, leading them to “vary substantially” to the
degree that they “…should not be included in the
same experiments as models for heritable human
diseases, because they may not be ideal for valid
comparisons”, and that “combining information on
quantitative risk factors for disease from different
populations of cynomolgus macaques could obscure
risk factor–disease associations or create spurious
or artificial associations that are biologically irrele-
vant” (14, 15). Even within species, there are sig-
nificant differences: six rhesus macaque subspecies
have been noted, displaying a variety of morpho-
logical, physiological, and behavioural characteris-
tics (16). Geographical differences are also of
major importance, affecting macaque populations
worldwide, from Sumatra, Mauritius, Singapore,
Cambodia and the Philippines (14), and impacting
susceptibility to malarial parasites, SIV infection
and pathology, and xenobiotic metabolism via
cytochrome P450 (CYP) differences, for example
(see Results).

It is these differences, and many others, that
this review collates and explains in the context of

genetics. Historically, genetic inter-species com-
parisons have been difficult, and therefore rare,
due to the lack of knowledge of NHP genomes,
and more recently they have been hampered by
the poor quality of NHP genome assemblies (17).
Nevertheless, knowledge of NHP genomes, in par-
ticular of the species used most commonly in bio-
medical research and testing — the rhesus and
cynomolgus macaques (7) — has become suffi-
ciently adequate to enable a number of studies,
including the critical comparative analysis pre-
sented in this paper. These burgeoning data are
increasingly underlining and substantiating King
and Wilson’s 1975 hypothesis (see 18) that vari-
able gene regulation is the key to species differ-
ences, rather than variable gene sequences — a
theory that becomes even more compelling when
the effects of the inherent stress associated with
laboratory life and experimentation on gene
expression in those laboratory animals are
considered. 

We previously examined the ‘genetic similarity’
argument with a focus on chimpanzees, prior to
the US Institute of Medicine’s (IOM) inquiry and
recommendation, and the consequent decision of
the US National Institutes of Health (NIH) that
invasive chimpanzee research in the USA should
end (6), bringing the USA into line with other
countries, such as EU Member States. This in-
depth critical review underlined the genetic basis
of generally accepted empirical failures of the
chimpanzee model, such as its use in HIV/AIDS
and hepatitis C research, alongside a comprehen-
sive prospective view that the scale, breadth and
consequences of the genetic differences known to
date rendered the chimpanzee model unlikely, if
not impossible, to be of significant human rele-
vance in the future — in spite of the chimpanzee
being more genetically similar to humans than
any other non-human species. Similarly, this
paper reviews the evidence to date on genetic dif-
ferences between monkeys (mainly macaques)
used in biomedical research and humans. Though
it is not restricted to them, it focuses on the two
species most commonly used globally: the rhesus
macaque, most commonly used in biomedical
research, notably in the fields of neuroscience,
immunology and infectious diseases (especially
AIDS research), and reproductive biology, stem
cell biology, metabolism and obesity, diabetes,
behavioural biology and addiction (9); and the
cynomolgus macaque, most commonly (though not
exclusively) used by the pharmaceutical industry
and contract research organisations (CROs) for
testing new drugs (19). It asks the same basic
questions: can the empirical failings of monkey
models in human-oriented biomedical research be
explained by genetic differences, and what do
these differences mean for the future use of mon-
keys in research? Can monkeys ever be regarded
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as similar enough to humans to be essential, or
even valuable, research models?

Methods

Papers describing important genetic differences
between humans and macaques, which have sig-
nificant or potentially significant functional bio-
logical consequences, were located via the
GoPubMed database (20). Mainly, but not exclu-
sively, they were identified via Medical Subject
Headings (MeSH) searches of the ‘Genetic
Phenomena’ MeSH descriptor and related sub-
headings, filtered with the ‘Macaca’ MeSH
descriptor. The major MeSH sub-headings used
were Genetic Processes, Genetic Structures,
Genetic Variation, Genotype, Phenotype, and
Sequence Homology, which helped limit the scope
of published papers from a total of more than
6,600 published between 2003–2013 inclusive. A
total of 109 papers, mostly published in the past
decade (2003–2013), but some dating from 1988,
were selected from the results on the basis of
their pertinence to this review, and were exam-
ined in detail. Their relevance, and suitability for
inclusion, was determined empirically based on
their description of some form of genetic differ-
ence(s) between an NHP species used habitually
in biomedical research with a view to human
medicine, and humans. The aim of this work is to
illustrate, with a sound and comprehensive basis,
that there are crucial inter-species differences
with extensive and far-reaching effects. These dif-
ferences permeate all aspects of gene expression
and protein function, from chromosome and chro-
matin structure all the way through to post-trans-
lational modification. 

Results

Cytogenetic and other major differences:
Fusions, inversions and translocations

Major genomic alterations such as these are impor-
tant, because they can significantly influence the
expression of genes within, or in the vicinity of, the
affected regions. This ‘position effect’ can influence
gene expression via changes in the proximity
and/or nature of cis-acting promoters and
enhancers, via the local structural environment of
chromatin, altering the accessibility of transcrip-
tional proteins, and by way of gene-silencing
effects, via the influence of nearby heterochromatic
DNA (21). Consequently, chromosomal rearrange-
ments are acknowledged as having been pivotal in
evolution, reproductive isolation and speciation
(e.g. 22–24). 

There are many examples of major genomic dif-
ferences between humans and other primates,
which confer notable biological consequences. A
study of the evolution of human chromosome 17
showed that a paracentric inversion occurred in
the human/chimpanzee/gorilla ancestor, meaning
that this chromosome differs in these three species
compared to other NHPs such as rhesus macaques
and marmosets, for example. Consequences in
humans involve specific microdeletions and DNA
duplications that are associated with various dis-
orders, including: mental retardation; diabetes and
renal disease; susceptibility to multiple sclerosis;
several cancers; hereditary neuropathy with pres-
sure palsies; Smith–Magenis syndrome; and
Charcot–Marie–Tooth disease type 1A (24). A com-
parison of 9Mb of human chromosome 21 with that
of the orang-utan, rhesus macaque, and woolly
monkey genomes, showed that around 9% of chro-
mosome 21 DNA is deleted in at least one NHP,
and identified a total of 114 genomic rearrange-
ments between humans and these NHPs, which
were randomly distributed over genic and non-
genic regions (22). These rearrangements are pos-
tulated to be involved in qualitative and
quantitative gene expression differences between
humans and NHPs; one of the deletions identified
resulted in the inactivation of a gene in woolly
monkeys that is involved in the synthesis of a cell-
surface molecule used in the clinical diagnosis of
cancer in humans (25). 

An analysis through the human/chimpanzee/
rhesus macaque lineages identified: human-
specific inversions on chromosomes 1 and 18, a
human-specific fusion creating chromosome 2, 43
microscopic breakpoints, and over 1,000 submicro-
scopic rearrangement-induced breakpoints, of
which 820 occurred between the rhesus macaque
and the human/chimpanzee ancestor (7). Notably,
the X chromosome exhibited three times more
rearrangements per megabase of DNA than the
non-sex chromosomes; this might be of importance,
due to the number of disorders related to X-linked
genes (there are at least 126 such genes, for exam-
ple, correlated with haemophilias and muscular
dystrophies [26]). 

By using an integrative ‘genomic triangulation’
approach, in which multiple independent sources
of genetic information are brought together to
reconstruct the ancestral genomic state and subse-
quent evolutionary processes, human-specific
changes in genome structure were ascertained by
comparisons with the chimpanzee and rhesus
macaque genomes (17). This study identified a
total of 288 human-specific genomic breakpoints.
Discounting 158 breakpoints that may have been
artefacts, 130 breakpoints were a result of ‘inter-
mediate’ (10kb–4Mb) rearrangements, which
included 64 insertions affecting 58 genes (of the
insertions, 36 consisted of complete gene-copies),
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and a further 22 genes were partially duplicated or
contained an insertion. 

Mobile DNA elements and copy number 
variation, etc.

The position effect described above, in which the
altered location and/or local environment of a gene
may have a profound effect on its expression, is an
important aspect of the action of mobile or ‘trans-
posable’ DNA elements — sequences of DNA that
can move or transpose themselves to another loca-
tion in the genome, sometimes also leaving a copy
of that gene behind. The extent of the position
effect’s consequences can be appreciated, when one
considers that repetitive sequences of DNA, most
of which constitute these mobile elements, account
for approximately 50% of the genome of primates,
including humans, chimpanzees and rhesus
macaques (27, 28). Even though the overall num-
ber of mobile elements is similar across many pri-
mate species, they have inserted into different
genomic locations, and have therefore affected the
evolution of those species via resultant differential
gene expression (29). There are several types of
mobile elements, which are characterised by dif-
ferent types of repetitive sequences, such as long
and short interspersed nuclear elements (LINEs
and SINEs, respectively; 30).

Alu elements

One especially abundant type of short inter-
spersed nuclear element (SINE) is the Alu ele-
ment, of which around one million copies have
accumulated in primate genomes over the past 60
million years of evolution — a process that is
ongoing (31). It is known, however, that the rela-
tively-closely related chimpanzee genome has up
to 100,000 fewer Alu elements than the human
genome (32), and it has been conservatively esti-
mated that around 110,000 Alu elements were
specifically acquired in the OWM lineage (7, 27).
Species including the lemur, marmoset, baboon,
rhesus macaque, chimpanzee and human, all
have different densities of Alu sequences in their
genomes (the marmoset shows the highest and
the lemur the lowest), all of which include many
lineage-specific families of Alu elements (33).
Their ubiquity and inter-species differences are
compounded by the consequences of their activi-
ties: via their role in genomic rearrangements,
they give rise to new exons, often in existing func-
tional genes and with diverse splicing patterns
(34); they affect gene function by physically dis-
rupting coding sequences when they insert into
new sites and/or vacate others, which might not
be repaired adequately; they alter gene expres-

sion and/or function by disrupting promoter/
enhancer regions and/or transcriptional splice-
sites; and they often give rise to large duplicated
regions of DNA (‘segmental duplications’), when
the mechanism of their transposition involves
copying themselves, rather than a simple ‘cut and
paste’ (see below). They are known to be involved
in the tissue-specific regulation of gene expres-
sion and development, in nucleosome positioning,
and in differential methylation (see 35). Due to
their mutagenicity, Alu elements specifically are
associated with various diseases, including: mus-
cular dystrophy, several cancers (retinoblastoma,
leukaemia, and breast and colon cancers),
haemophilia, neurofibromatosis, type-2 diabetes,
Alzheimer’s disease, and Hunter and Sly syn-
dromes (see 32, 33, 35, 36). Consequently, inter-
species and intra-species differences in mobile
elements, their locations and proximity to specific
genes, etc., will differentially affect gene comple-
ment and expression, and also disease suscepti-
bility and pathology (6). The power of Alu
elements, which exert a greater influence on phe-
notype, species differences and disease suscepti-
bility than previously thought (33), can be
illustrated by the study of just four, all of a spe-
cific type, across seven primate species (human,
chimpanzee, gorilla, orang-utan, baboon, rhesus
macaque and lion-tailed macaque [Macaca
silenus]); these Alu elements reside directly
upstream of the genes they regulate and affect
gene transcription by carrying cis-acting ele-
ments responsive to hormones, calcium, tran-
scription factors and other effectors (37). These
four elements, known to impact the expression of
the parathyroid hormone (PTH) gene, the
haematopoietic cell-specific FcεRI-γ receptor gene,
the CNS-specific nicotinic acetylcholine receptor
α3 gene, and the T-cell-specific CD8α gene, were
found to be differentially distributed across these
seven primate species, and in a way that “estab-
lishes a link between gene regulation and the
divergence of primates”. It had been previously
noted that, “Alu insertions are now extremely
attractive candidates for promoting differences in
the developmental regulation of primate genes”,
on account of their “…genomic mobility, high CpG
content, tissue-specific methylation, and their
effect on chromatin structure and gene expres-
sion” (for references, see 37). One salient example
of the power of just one differential Alu element is
the Alu-mediated inactivation of the CMP-N-
acetylneuraminic acid (CMP-Neu5Ac) hydroxy-
lase gene in humans (38). Unlike the gene in the
NHPs examined (chimpanzee, bonobo, gorilla,
orang-utan, gibbon, baboon, and rhesus monkey),
the human gene contains an AluY element that is
different to the AluSq element found in the NHPs,
and it is this AluY element that is believed to
have deleted a 92bp exon in the human gene, ren-
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dering it inactive. This results in a lack of a spe-
cific sialic acid residue on the surface of almost all
cells in the human body, compared to the NHPs,
which has significant consequences for suscepti-
bility and resistance to microbial infection, as
many pathogens initiate the infectious process via
preferentially binding to particular sialic acid
residues on cell surfaces, including influenza
viruses and Escherichia coli (38, 39).

Long interspersed nuclear elements (LINEs)

With regard to LINEs, it has been conservatively
estimated that approximately 20,000 of a certain
type of LINE (L1) were specifically acquired in the
OWM lineage (7, 27). It is also known that specific
sub-types are known to differ between primates.
For example, the L1PA5 element of the L1 LINE
sub-family is present in 19,000 copies in the rhesus
macaque genome, all of which are specific to the
OWM lineage, which itself contains 32 OWM-spe-
cific L1 sub-families (27). The same report identi-
fied 80–100 active copies of potentially active L1
elements in the human genome, while just nine
were found in the rhesus macaque genome. LINE-
1 elements may induce ‘gene breaking’, splitting a
host gene into two transcripts (40).

Endogenous retroviral mobile elements

Another type of mobile element, the endogenous
retrovirus (ERV), is a so-called genomic ‘footprint’
of previous retroviral infection, and is inherited by
successive generations (41). These ERVs are able
to exert similar effects on gene complement and
expression as other types of mobile elements, and
the typical primate genome contains around half a
million copies. 

Consequences of insertional differences

A comparison of the human, chimpanzee and rhesus
macaque genomes identified 112 examples of
human-specific genomic insertions involving mobile
elements (including LINEs, Alu elements and
ERVs), which have given rise to gene transcripts
that are specific to humans, of which 74 were asso-
ciated with known genes (42). The consequences of
this are much greater than the modest number may
suggest. The insertion events had generated novel
promoters and exons, novel intragenic and inter-
genic transcripts, novel functional RNAs (such as
small interfering and micro RNAs), anti-sense tran-
scripts, polyadenylation sites and splice sites, for
example, and disrupted evolutionarily conserved
(and therefore important) control elements, altering
gene expression, activity and/or function.

DNA duplications 

Segmental duplications resulting from the action
of repetitive sequences, which have arisen over the
past 35 million years of primate evolution, have
been estimated to comprise up to 5–6% of primate
genomes (23). They are frequently species-specific,
and are known to have contributed greatly to evo-
lution, speciation, gene innovation and therefore
inter-species biological differences. With particular
regard to the use of animals in biomedical
research, they can affect disease aetiology/pathol-
ogy and xenobiotic metabolism (e.g. 23, 43). They
are known to underpin many genomic disorders,
such as Smith–Magenis, Prader–Willi, velocardio-
facial, DiGeorge, Angelman and cat-eye syn-
dromes, neurofibromatosis type 1, and Charcot–
Marie–Tooth disease type 1A, as well as a host of
more-complex genetic traits (44), and have been
implicated in the creation of regions of genomic
instability that can affect predisposition to dis-
eases. For example, a duplicated segment of
human chromosome 5 is associated with the locus
for, and may well affect predisposition to, the neu-
rodegenerative disease, spinal muscular atrophy
(23). It has also been estimated that duplication
events may have created around 1,100 new tran-
scripts over the last 35 million years of primate
evolution (44), and that just 2.3% of the rhesus
macaque genome consists of segmental duplica-
tions, compared to 5–6% for the human and chim-
panzee genomes (7) — all of this significantly
contributes to inter-species variability among pri-
mates. The biological significance of some duplica-
tions has been established (7); for example:
susceptibility to HIV infection (CCL3L1-CCL4),
toxicity response (cytochrome P450), and develop-
mental regulation (KRAB-C2H2). There are oth-
ers, including those which affect the immune
response (via the major histocompatibility complex
[MHC]/human leukocyte antigen [HLA] system;
see below).

Consequences of DNA duplication variations

Crucially, many of these duplications are not sim-
ply ‘lost’ without consequences to the organism’s
genome, i.e. they do not just result in inactive gene
copies and pseudogenes. An estimated 10% of line-
age-specific gene duplications in primates provide
new functions that are positively selected (45).
Here are some examples to illustrate this point:
a) The KRAB-ZNF gene family encodes the largest

class of mammalian transcription factors; more
than 400 genes are present in the human
genome, of which more than 136 are primate-
specific (46). Seventy of these genes are present
in segmental duplications, 24 of which are
exclusive to hominids. In short, many KRAB-
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ZNF genes undergo segmental duplication, fol-
lowed by functional and regulatory diversifica-
tion, often via sequence changes that alter
DNA-binding and splicing specificities, as well
as tissue-specific expression. Ultimately, in con-
cert with the fact that each gene/gene product
may affect the expression of hundreds of down-
stream target genes, this results in the altered
structure and function of regulatory networks
in different primate species.

b) Segmental duplication can result in copy num-
ber variation (CNV), in which different ‘copy
numbers’ of the same gene, generated by dupli-
cation, give rise to significant differences in the
expression of the affected genes. As a conse-
quence, CNV is a major cause of genetic varia-
tion even among humans, i.e. within the same
species, let alone between different species (47).
CNV may affect, among other things, disease
susceptibility, immune responses, and the for-
mation of tumours (e.g. 48, 49). One study iden-
tified 51 genes with increased copy number in
the rhesus macaque compared to humans (7).
Notably, duplication and CNV have greatly
influenced the evolution of a family of genes
that is pivotal to the function of the immune
system: MHC, or, in humans, the HLA system.

The HLA gene family comprises a large vari-
ety and number of polymorphic genes, which
produce cell-surface molecules that facilitate
recognition by — and in the case of ‘foreign’
molecules (for example, those derived from
infectious agents), destruction by — immune
cells. The HLA genes give rise to two classes of
HLA molecules, which are involved in immune
function in different ways: class I HLAs are
involved in the binding and presentation of
intracellularly-generated peptides to CD8+ T-
cells, whereas class II molecules present pep-
tides of extracellular origin to CD4+ T-cells.
Both class I and class II HLAs are derived from
three major classes of genes (HLA-A, B and C
for class I; HLA-DP, DQ and DR for class II; 50).

Because of the important role of the MHC in
several biological and medical areas, such as
disease susceptibility and resistance, trans-
plantation, reproduction and stress manage-
ment, it has been studied extensively, both in
humans and in the non-human species used in
research, such as rhesus macaques (see 51).
This degree of focus on MHC function has high-
lighted important inter-species and intra-
species differences, including the creation,
deletion and inactivation of genes resulting
from extensive genomic duplications and other
rearrangements, as well as differences in levels
of allele expression.

The equivalent to HLA class I genes in rhesus
macaques are known as Mamu-A and Mamu-B,
and although an equivalent to the HLA-C locus is

missing in rhesus and other macaque species
(52), at least 37 extra class I genes exist in the
rhesus macaque (11). In addition, macaque MHC
gene copy numbers are greater than the copy
numbers of the equivalents in humans and all
four great-ape species, while the copy number of
other immune-related genes (immunoglobulin
lambda-like) is also higher in macaques. This
substantiates claims that, “…although the
macaque has been extensively used to model the
human immune response, there may be substan-
tial and previously unappreciated differences in
HLA function between these species” (7).
Furthermore, this may not be an inter-species
problem of relevance and extrapolation: Mamu-A
allele variations are also highly divergent and
specific to populations of rhesus macaques, which
mean that Indian, Burmese and Chinese mon-
keys differ markedly immunologically. The lack
of relevance of immune-related data between dif-
ferent populations of macaques clearly has seri-
ous implications for the extrapolation to humans
of data from macaque research, particularly with
regard to responses to infectious agents. For
example, it is known that different MHC class I
alleles are associated with different responses to,
and outcomes of, SIV/HIV infection (51).
Furthermore, the MHC (comprising both class I
and II alleles) is associated with more human dis-
eases and immune-related disorders than any
other region of the human genome, such as
insulin-dependent diabetes, rheumatoid arthri-
tis, ankylosing spondylitis, common variable
immunodeficiency, and IgA deficiency (53, 54).
Consequently, variability in MHC composition,
processing and expression has significant impact
on disease susceptibility and pathology.

c) A comparison of pooled genetic material from
the human, chimpanzee, bonobo, gorilla, orang-
utan and Japanese macaque (Macaca fuscata),
which covered approximately 30% of the human
genome, identified 322 sites of large-scale inter-
species copy number differences (55). Fourteen
of these were human lineage-specific gains,
most of which were in genomic regions previ-
ously identified as segmental duplications, and
all of which represented copy number gains and
contained known genes, including genes
involved in immune (VDUP1) and oxidative
stress (FCGR1A) responses. As expected, due to
its greatest genetic divergence from humans,
the Japanese macaque showed the highest num-
ber of lineage-specific deletions, but also the
highest number of duplications of the species
studied. In spite of current knowledge of
macaque CNVs, it has been estimated that,
“thousands of common macaque CNVs are yet to
be identified” (56), although those that have
been identified to date are of great interest. One
study compared genomic regions associated
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with CNVs in humans, chimpanzees and rhesus
macaques, and found that many of these regions
overlapped: more than 2,000 human CNVs over-
lapped with orthologous chimpanzee or rhesus
macaque CNVs, and 170 of these overlapped
with both (56). These CNVs were ‘collapsed’ into
34 ‘hotspots’ for CNV formation, which were
identified as being heavily associated with
genes. Notably, CNVs in the rhesus macaque
genome are much more likely to be associated
with functional genes than are human CNVs.
This is relevant to the use of macaques as a
model species for human research, because
CNVs alter the number and position of genes
and/or elements that regulate gene expression.
In addition, their effects are not limited to the
exact CNV locus: studies have demonstrated
that CNVs affect gene expression at other loci,
such as where genes share the same promoter
region (57), and where the presence or absence
of related pseudogenes may affect the level of
associated microRNA molecules (due to their
degree of sequestration) with the consequent
modulation of gene expression (58).

Many of these genes are involved in immune
function, including genes comprising the
Leukocyte Receptor Cluster (LRC), which itself
includes killer-cell Ig-like receptor (KIR) genes,
whose gene products interact with MHC class I
molecules (see above). One example of an
important gene affected by species-dependent
CNV is the CHEK2 gene, which is important for
genome stability, and is known to be a multi-
organ cancer susceptibility gene, including can-
cer of the breast, colon and prostate. It is
present in just one copy in baboons, pig-tailed
and rhesus macaques and orang-utans, but in
7–9 copies in chimpanzees and gorillas, and in
13–16 copies in humans (59).

d) Parallel duplications and losses of the RHOXF2
gene in humans and 16 NHP species, alongside
different patterns of expression, are thought to
have important inter-species biological implica-
tions due to the role of the gene as a transcrip-
tion factor and in developmental processes (60).
Mediated by ERV activity, this has resulted in
between one and six copies of the gene in each
of these species; twice the quantity of RHOXF2
DNA in rhesus and Southern pig-tailed
macaques (Macaca nemestrina) compared to
other types of macaque; very different patterns
of expression in rhesus macaques, in which it is
chiefly expressed in the lung rather than the
testes; and a possible functional difference in
rhesus macaques and leaf monkeys, due to
sequence divergence between their two gene
copies, in stark contrast to humans in which
this has not occurred. Notably, RHOXF2 is
expressed differently in the brains of human
newborns/embryos and adults, and it regulates

the expression of at least three other genes
involved in the function of the central nervous
system (CNS). It is therefore thought to be
involved in CNS function and brain develop-
ment, with significant implications for inter-
species differences. In summary, genes
associated with CNVs are more likely to be dif-
ferentially expressed between species, and
CNVs are therefore hypothesised to be one of
the major factors in inter-species variation due
to differential gene expression (56).

Long inverted repeats

Another type of repeat is the ‘long inverted repeat’
(LIR), consisting of a sequence of DNA followed by
its reverse complementary sequence. LIRs have
been studied because of their roles in inducing
genome instability, via gene amplification, recombi-
nation, DNA double-strand breaks and rearrange-
ment, and also in gene expression regulation, via
RNA interference, initiation of transcription and of
DNA replication, and alternative splicing (see 61).
Comparative studies of human, chimpanzee and
rhesus macaque genomes identified, for example,
different numbers of LIRs associated with ortholo-
gous genes in these species, including 546 in
humans, of which 421 (77%) were human-specific,
but only 130 in rhesus macaques, of which 107 (82%)
were rhesus macaque-specific (61). Genes associated
with the human-specific LIRs were involved in neu-
ral development and function, and cell communica-
tion.

Gene complement

The evolution of genomes over time, as well as
causing changes in gene expression, regulation
and gene products, also results in the creation of
some new genes and the loss of others, largely due
to the activity of mobile elements as described ear-
lier. For example, even chimpanzees and humans,
which have genomes more alike than any other
human–non-human species pair, show large num-
bers of gene gains and losses over time. One study
suggests that, since the evolutionary split between
the species around six million years ago, chim-
panzees have gained 26 genes and lost 729, while
humans have gained 689 genes and lost 86 (62);
another study claims (similarly) that humans have
gained at least 678 genes, while chimpanzees have
lost 740 (63). In primates, genome changes at the
nucleotide level occur more slowly than in non-pri-
mates, but the gain and loss of entire genes are
accelerated in primates compared to other mam-
mals (see 63). This is thought to explain how
humans and chimpanzees are so similar in terms
of their shared gene sequences, yet display many
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biochemical, physiological and behavioural dissim-
ilarities. In fact, humans in particular have a rate
of gene turnover 2.5× that of all other mammals,
which includes several gene families, including
transcription factors, immune response-related
genes, and, notably, genes preferentially expressed
in the brain (63). A computational analysis of pri-
mate genomes has predicted that 108 gene families
have changed size during the evolution of primate
species, and have changed at a much higher rate
than overall primate rates of gene gain and loss —
this includes 1,358 genes gained by the rhesus
macaque lineage as a result of duplication events
(7). One analysis of a relatively small proportion of
the cynomolgus macaque genome compared 139
novel transcripts that contained at least 90bp open
reading frames with the human genome, and
showed that 64 of them (46%) could not be
matched, suggesting that they were specific to the
cynomolgus macaque (64). Many of the genes iden-
tified in this analysis were related to immune func-
tion, such as immunoglobulin genes, members of
the tumour necrosis factor superfamily, and genes
involved in B-cell function and the MHC, which are
important regulators of inflammation, apoptosis,
and the immune system in general.

Effects on immune responses

One family of genes intimately involved in immune
function, which is greatly affected in terms of
species-specific gene complement, is the MHC fam-
ily; the absence of an orthologue for the HLA-C locus
in macaques was an example discussed earlier
among aspects of expression and CNV. Many new
MHC genes and alleles have been generated via
duplication and recombination processes, at the
same time as others have been deleted or inacti-
vated, leading to, for example, the Mamu-A locus in
rhesus macaques becoming three times larger than
its HLA-A human equivalent (51). While there are
some broad similarities in terms of the configuration
of the MHC loci across species, many gene lineages
and alleles are specific to particular populations of
monkeys. For example, rhesus macaques of Chinese
origin have a higher general genetic variability than
do those of Indian origin (which is not limited to, but
includes, their MHC loci); in rhesus macaques of
Burmese origin, half of their MHC class I alleles are
novel (51). Indeed, the overall genetic backgrounds
of rhesus macaques of different geographic origins
are “remarkably divergent” (see 51), with serious
consequences for their use in biomedical research
with a human focus (see Discussion).

Effects on drug metabolism 

In view of the extensive use of macaques in the
testing of new drugs intended for human use, sur-

prisingly little investigation has been conducted
into the nature of their cytochrome P450 (CYP)
enzyme orthologues — the class of enzymes
responsible for around 90% of drug metabolism
(65). However, one recent study identified 18 novel
P450 sequences in the cynomolgus macaque, for
which the protein identity with humans was
94–99% (19). This is notable, because it has been
established that even minor variations in amino
acid sequence (as little as a single conservative
substitution) may cause significant differences in
the activity and/or substrate specificity of P450
enzymes (66, 67), and that important differences in
P450 activities exist with consequences for extrap-
olation between monkeys and humans (68).
Comparative analyses of the genomes of key model
organisms used in drug testing, such as two types
of mini-pig, beagles, boxers, mice, rats, and
cynomolgus and rhesus macaques, revealed “con-
siderable variation in gene content”, including “key
genes in toxicology and metabolism” (69). One such
example involved the UDP glucuronosyltrans-
ferase 2 genes (UGT2), the most important
enzymes in Phase II metabolism, that have a criti-
cal role in the conjugation and elimination of toxic
compounds, for which Vamathevan et al. (69) noted
“the lack of conservation between human and
macaques”. This report also noted that both rhesus
and cynomolgus macaques have around two-thirds
of the ADMET genes (Phase I and Phase II
enzymes, and transporter genes) that humans have,
the most notable difference being that there are sig-
nificantly fewer Phase II genes in macaques.

Coding sequence differences

An analysis of cDNA libraries from the rhesus
monkey revealed that the coding sequences (CDS),
as well as the 5´ untranslated regions (UTRs) of
the cDNAs, were much less variable than the 3´-
UTRs (70), in agreement with previous reports
(71), which put the sequence identities of these
regions with those of humans at around 98% (CDS)
and 95% (3´-UTRs). This variability of UTRs is of
interest, as inter-species differences between
UTRs may affect gene regulatory regions, altering
expression in several ways, via transcript stability,
localisation, translation efficiency, etc. This same
study also screened just over 1,800 rhesus monkey
cDNAs, and found 61 sequences that had no
human equivalent, which may therefore represent
genes unique to the rhesus macaque. It also
reported the existence of 214 human and monkey
transcripts that showed different structures, i.e.
contained insertions or deletions, 200 of which
were in functional gene regions with potential
functional consequences, and a number of rhesus
monkey-specific splicing events that produced rhe-
sus monkey-specific exons.
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Gene expression differences

Even where genes may be identical or highly simi-
lar in different species, they may be expressed dif-
ferently, at different levels, and/or in different
tissues. Studies on differential gene expression
have elucidated this area as the basis for wide-
spread and varied species differences.

A comprehensive analysis of the genome of the
cynomolgus macaque, focusing on the suitability of
the species as a model for drug safety assessment,
identified 6.5% of all expressed genes (n = 718) as
being highly variably expressed in the livers of
macaques of Philippine, Chinese and Mauritian
origin (19). This illustrates that the results of drug
studies may be heavily influenced by the type of
macaque used, even of the same species. Many of
these genes, as expected, had metabolic functions,
though others were associated with immune func-
tions. It also revealed much about comparative
CYP expression in humans and cynomolgus
macaques: while variation among individual
macaques was low for the 50-plus cytochrome P450
genes, and overall inter-species expression corre-
lated fairly well (r = 0.73), the expression of six of
the enzymes varied greatly in the macaques, and
nine of them had basal expression levels very dif-
ferent from the levels in humans; some CYPs were
more active in macaques than in humans, and one
third of them were differentially expressed, includ-
ing the key enzyme, CYP1B1. These considera-
tions led to the conclusion that, “…gene expression
levels of certain cytochromes p450 can complicate
the interpretation of primate drug metabolism
experiments with respect to their translational rel-
evance for humans” (19). Some of the other differ-
entially expressed genes, such as various cytokines
and chemokines, produce proteins that are assayed
as part of pre-clinical and clinical drug trials, as
increased levels indicate toxicity-mediated activa-
tion of the immune system, so they are of direct
relevance to the suitability of the macaque for drug
testing purposes. Notably, and in support of this
finding, it has been previously concluded that
immune responses in NHPs are “poor predictors of
human defence reactions in clinical trials, which
can lead to fatal outcomes” (19, 72).

Effects on immune responses

Studies of gene expression in stimulated primary
monocytes from humans, chimpanzees and rhesus
macaques have shown that immune responses to
viral infections differ between primate lineages,
supporting claims that lineage-specific immune
responses are involved in species-specific differ-
ences in susceptibility to infectious diseases.
Human responses, for example, are enriched for
genes associated with apoptosis, cancer, and sus-

ceptibility to infectious and immune-related dis-
eases, while chimpanzee responses are enriched
for HIV-interacting genes (73). These investiga-
tions showed that 17.5% of genes demonstrated
altered expression levels in at least one of the three
species, and 25% of these genes (4.3% of the total
investigated) had different expressions in all three
species. These genes were involved in various
immune-related processes and pathways, such as
pro-inflammatory cytokines and chemokines. The
authors conservatively estimated that 393 genes
were unique to the rhesus macaque immune
response. Interestingly, expression of the pro-
apoptotic gene CASP10 was greatly reduced, exclu-
sively, in human monocytes. Mutations in, and
reduced expression of, the CASP10 gene have been
associated with several human cancers (see 73),
which have different prevalence across primate
species.

Gene expression in the brain

With regard to the brain, one study reported that
over 7% (893/12,473) and 6% (789/12,473) of genes in
the cerebellum showed increased and decreased
expression, respectively, in humans compared to
rhesus macaques (74). Another noted that 91 genes
were differentially expressed in human brains rela-
tive to those of rhesus macaques and chimpanzees
(75). A ‘whole blood’ gene expression analysis in
humans, cynomolgus and rhesus macaques, and
African green monkeys, revealed each of the NHP
species to be “dissimilar to humans” (the cynomolgus
macaque was most dissimilar), and that 317 genes
(including chemokines, and splicing and transcrip-
tion factors) were differentially expressed in humans
compared to the NHPs (76).

Gene expression in other organs

A genome-wide comparison of gene expression in
the livers, kidneys and hearts of humans, chim-
panzees and rhesus macaques, revealed many
genes whose regulation has evolved under natural
selection, supporting the theory that gene regula-
tion contributes more to speciation than structural
differences in the genes themselves. The compari-
son showed that the regulation of a large number
of transcription factor genes and metabolic path-
way genes had evolved under natural selection,
particularly in the human lineage (18). While
fewer genes were differentially expressed between
species in the liver compared to the heart and kid-
ney, the magnitude of expression differences in
this organ was greater. Between humans and the
rhesus macaque, there were 5,525, 6,250, and
5,545 genes differentially expressed in the liver,
kidney and heart, respectively. The classes of dif-
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ferentially expressed genes are again of interest,
as they included transcription factors, which can
affect the regulation of many hundreds of genes
with significant phenotypic effects (77), as well as
metabolism genes (particularly important for drug
studies), and genes involved in neurodegenerative
diseases and various cancers. These findings built
on the results of a prior study from 2006, which
similarly reported a relative and highly significant
excess of transcription factors in the genes whose
expression was specifically increased in humans
compared to the chimpanzee, orang-utan and rhe-
sus macaque, and which the authors believed
influenced disease susceptibility and therefore had
“implications for studies of human disease” (78). A
study focusing on the heart identified 65 genes
that were differentially expressed in humans, rhe-
sus monkeys, rats, mice and dogs, with a variety of
functions and involvements, including hormone-
receptor binding, thyroid cancer, and proteasome
function (79). Notably, more than 46% of these
genes have been associated with cardiovascular
disease. This finding may underline why, in car-
diovascular disease research, “animal models fell
short of the expected results, or even came out with
opposite phenomena in many cases” (79). 

Factors affecting gene expression

There are many molecular mechanisms and factors
that can alter the expression of a gene, some of
which have been investigated comparatively in
multiple species.

Epigenetic factors 

Epigenomic modifications can be considered to be
chemical modifications to the genetic material
other than of the nucleotide sequence of the DNA
itself, which control and alter gene expression (80).
Elicited by a multitude of internal and external
factors, these modifications are of interest,
because of their power (the ability to modulate
the expression of many genes), range and com-
plexity, intricate regulatory mechanisms, heri-
tability, flexibility (permanence/reversibility), and,
above all, the fact that they permit radically dif-
ferent temporal and spatial gene expression pat-
terns, thereby promoting biological diversity from
identical genetic sequences. Salient illustrative
examples of their power include the food-directed
alternative development of distinct queen and
worker honeybees from identical genomes (81, 82),
and the speciation of Darwin’s finches in the
Galapagos islands, highlighting epigenetics as a
“major component of genome variation during evo-
lutionary change” (83). With direct relevance to
humans and animal models in biomedical

research, epigenetic modifications help to explain
how identical twins generally have different dis-
ease conditions, how hundreds of environmental
toxicants associated with diseases do not induce
DNA mutations, and how genome-wide association
studies have revealed less than 1% of a specific dis-
ease population share a DNA sequence mutation.
In short, many biological phenomena cannot be
explained by ‘classical’ genetics, and the environ-
ment — via, to some degree, epigenetics — plays a
major role (84). Epigenetics therefore has a signif-
icant influence on gene expression and associated
biology, and is highly relevant to the consideration
of animal models and their relevance to humans. 

Epigenetic modifications are numerous (in their
hundreds) and diverse (81, 85–87), affecting the
DNA itself, or the histone-protein ‘scaffold’ around
which the DNA is wound (88). They may exert
potent modulatory effects on genes, both stimula-
tory and repressive, even to the degree of turning
expression on or off. This is because they are mech-
anistically important in the ‘on demand’ de-con-
densation of chromatin, opening up the structure
for the access of enzymes that transcribe, repair
and copy the DNA in essential biological processes
(86), and are therefore intimately associated with
the modulation of gene expression, which, in turn,
is finely tuned and tightly controlled, due to the
complex combinations of modifications that exist
(86, 87) — there might be as many as 2.2 × 1012

possible combinations (89). 
Examples of environmental influences on epige-

netics include many xenobiotics, such as various
pollutants, cigarette smoke, changes in tempera-
ture and other stressors, and these influences have
significant consequences during fetal development
(90). Many xenobiotics, including several prescrip-
tion drugs, pollutants, caffeine, and nicotine, as
well as stress, affect normal fetal development via
epigenetic mechanisms, and also modulate the
perinatal programming of the hypothalamic–pitu-
itary–adrenal (HPA) axis (91). HPA programming
is crucial, because it interacts intimately with the
immune system. Its dysregulation may lead to
excessive inflammation via increases in the levels
of circulatory inflammatory cytokines, concomitant
decreases in anti-inflammatory cytokines, and
alterations in the expression of genes involved in
immune activation of peripheral blood cells, for
example, along with general adverse effects on
immune function and increased susceptibility to
infectious and autoimmune diseases (see 92).
Furthermore, while many epigenetic modifications
induced by these factors are dynamic, transient
and reversible, some are long-lasting, even semi-
permanent, and may be trans-generational, inher-
ited by an individual’s offspring and persisting for
several generations (93–95). 

Epigenetic modifications are genome wide,
though their effects on particular genes and
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genetic pathways, and on eventual phenotypes, are
especially notable when considering species differ-
ences and the use of animals as models for
humans. It has been postulated, for example, that
“the entire topology of a complex brain network
can be reprogrammed by subtle adjustments of
many genes that act additively to produce a given
phenotype” (96). CYP genes, mentioned earlier, are
regulated epigenetically, both transcriptionally
and post-transcriptionally. The DNA methylation
of CYP genes appears especially prevalent, includ-
ing the CYP epoxygenase genes, which “could have
significant consequences on drug and endogenous
compound metabolism” (97). In fact, both DNA
methylation and histone modifications contribute
significantly to variability in function of many
genes controlling the absorption, distribution,
metabolism and excretion (ADME) of drugs, with
just 20–30% of inter-individual variations in drug
efficacy and toxicity due to genetic factors (98).
Epigenetic factors are also strongly associated
with susceptibility to cardiovascular diseases, age-
ing (97, 99), hypertension and preeclampsia (85),
psychiatric disorders, including PTSD, depression,
bipolar disorder and schizophrenia (95), systemic
lupus erythematosus (100), and others.

Inter-species epigenetic differences have not
been well investigated, given the nascent nature of
the discipline, but, given the breadth and degree of
intra-species variability that is already known to
exist, these differences are likely to be numerous.
However, current examples include DNA methyla-
tion’s “surprising diversity in regulatory mecha-
nisms and genome-wide profiles over various
organisms”, with “extremely diverse” distributions,
regulatory mechanisms and potential functions
across eukaryotic genomes (101); differences in
lysine acetylation and methylation in histone H3
across different species (102); and an NHP gene-
expression study that analysed a specific histone
modification associated with transcriptional pro-
motion, known as H3K4me3 (trimethylation of
lysine 4 of histone 3), in lymphoblastoid cell lines
from humans, chimpanzees and rhesus macaques.
Inter-species differences were identified in the
locations of H3K4me3, which correlated with genes
known to be differentially expressed between the
three species, and which were therefore conserva-
tively estimated to be partly responsible for 7–10%
of gene expression differences in primate lym-
phoblastoid cells (103). As part of this study, the
authors also identified 5,420 genes as being differ-
entially expressed between humans and rhesus
macaques.

Transcription factors

Another salient example is transcription factors
(as discussed above) — gene products that are able

to modulate the expression of hundreds of genes
that they specifically regulate, with notable effects
on phenotype, and that appear to have been posi-
tively selected in humans compared to other pri-
mates (18, 77, 78). An analysis of the largest family
of primate transcription factors, the Kruppel-type
zinc finger (KZNF) family, revealed a host of line-
age-specific duplications and deletions that had
occurred over the evolutionary history of humans,
chimpanzees, orang-utans and rhesus macaques,
leading to 213 species-specific KZNF genes, includ-
ing seven human-specific and 23 chimpanzee-spe-
cific genes (104). In addition, it appeared that the
human lineage had lost ten such genes via pseudo-
genisation. The human genome was shown to have
609 KZNF genes versus 459 in the rhesus macaque
(i.e. 150 more). The analysis also showed that
humans had gained seven and lost ten KZNF
genes, compared to the gain of 38 and loss of at
least 40 such genes in the rhesus macaque. One
transcription factor that displayed species-specific
structural changes (ZNF80B) was found to have
binding motifs on target genes that are important
in neuronal function and development.

MicroRNAs and small interfering RNAs

MicroRNA molecules (miRNAs) are a relatively
recent discovery, and have become a burgeoning
area of research as they are expected to possess
crucial regulatory functions and therefore to
underlie many species differences, including those
among primates. They are transcribed as precur-
sor molecules (pre-miRNAs) of around 70
nucleotides (nt), which are processed into small
(typically 20–24nt) RNA molecules, of which many
thousands have been identified in all species to
date. They operate in complex regulatory net-
works, repressing gene expression by binding to
UTRs in messenger RNAs (mRNAs) as part of the
RNA-induced silencing complex (RISC), to block
their transcription and/or induce their degrada-
tion, among other functions (105). This process is
known as RNA interference. miRNAs have been
associated with varied physiological and patholog-
ical processes, including developmental pattern-
ing, cancer progression and neurological functions
(106). One miRNA may be able to target the
expression of hundreds of genes.

Significant differences exist in miRNA reper-
toire and function between species, due to their
rapid evolutionary dynamics. In humans and
chimpanzees, for instance, many precursor and
mature miRNAs differ in sequence, expression and
secondary structure, and/or are present in one of
those species only (see 6); in humans and orang-
utans, just 40% of more than 500 miRNAs show
complete identity to their human orthologues; and
in humans and rhesus macaques, just 42.5% of
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pre-miRNA human homologues have similar struc-
tures to their human counterparts (107). The same
study also identified 35 human miRNAs that were
not present in the miRNA repertoire of at least two
species of primate (chimpanzee, orang-utan and
rhesus macaque), 12 of which were present only in
humans, and noted that, even where miRNAs
showed a high degree of sequence and/or structural
similarity, significant differences in function could
still be present via different expression levels, and
target gene specificity as a result of the inherent
fast rate of evolution of miRNA binding sites (108).
Another study investigated miRNA expression and
regulation in the brain, specifically in the pre-
frontal cortex and the cerebellum of humans, chim-
panzees and rhesus macaques. It noted that up to
31% of the 325 miRNAs examined “diverged sig-
nificantly” between humans and rhesus macaques,
and that human-specific miRNAs were associated
with neurons and target genes involved in neural
functions, supporting the theory that miRNAs
have contributed to the evolution of human cogni-
tive functions (106). Of the 413 miRNAs expressed
in the human brain, 11% were not detected in rhe-
sus macaque brains, and almost one third (31%) of
miRNAs common to the human and rhesus
macaque prefrontal cortex were differentially
expressed in those two species. Of these differen-
tially-expressed prefrontal cortex genes, 77% were
also differentially expressed in the human and rhe-
sus macaque cerebellum. Such is the degree of
change of miRNA expression and the repertoire of
their target genes across NHP species — develop-
mentally throughout NHP lifespan, and develop-
mentally throughout the lifespan across NHP
species — that miRNAs are thought to be the basis
and major driving force of the evolution of the
human brain (109). This was evidenced by a study
of the prefrontal cortex and cerebellar cortex tran-
scriptomes of humans, chimpanzees and rhesus
macaques of different ages, which revealed signifi-
cant variance of these types, in addition to
sequence divergence in cis-regulatory regions
(109). Notably, however, those genes whose expres-
sion varied both developmentally and species-
dependently, had markedly high densities of
predicted miRNA and transcription factor binding
sites in their regulatory regions.

An analysis of miRNA expression in human and
rhesus macaque embryonic stem cells (ESCs)
revealed that, generally, expression was broadly
similar — as expected, given their critical develop-
mental roles. Crucially, however, the expression of
some clusters of miRNAs differed significantly,
including: the primate-specific chromosome 19
miRNA cluster (C19MC), containing more than 30
mature miRNAs, expressed in human ESCs, pla-
centa and fetal brain, but almost absent in rhesus
macaque ESCs; the miRNA cluster in the
imprinted Dlk1-Dio3 region, enriched in rhesus

macaque ESCs, yet rare in human ESCs; and the
miR-467 cluster (110). A stringent analysis looked
for orthologues of 1,733 annotated human miRNAs
in 11 non-human species, to identify human-spe-
cific molecules (111). Ten human miRNAs were
identified, for which there were no orthologues in
any of the 11 non-human species, and a further 12
miRNAs that had human-specific sequence
changes in the crucial seed region (the region of the
miRNA that recognises and binds with target
mRNAs). This study also identified one human-
specific miRNA, miR-941, which was highly
expressed in the brain and which has been impli-
cated in neurotransmitter signalling via the roles
of some of its target genes. Also of note was that
the host gene of miR-941 (miR-941 is an intronic
miRNA) — DNAJC5 — encodes cysteine-string
protein-α (CSPα), which has been linked to neu-
rodegenerative diseases, including Huntington’s
disease and Parkinson’s disease, and adult neu-
ronal neroid-lipofuscinosis; and that miR-941 may
be associated with Hedgehog and insulin sig-
nalling pathways, with associated roles in human
longevity and some cancers (111). 

Another type of RNA interference that modu-
lates gene expression involves very similar, but not
identical, types of small RNA molecules, known as
small interfering RNAs (siRNAs). These may be
generated via the transcription of pseudogenes —
genes that are no longer able to produce a func-
tional gene product (for example, due to changes in
their coding sequence, such as frame-shifts or pre-
mature stop codons), but which are nonetheless
still transcribed. These transcripts are then able to
modulate the expression of other genes via direct
antisense interference, or via subsequent siRNA
generation. One investigation identified 1,750
transcribed pseudogenes in the human genome, of
which only half were conserved in the rhesus
macaque (112). 

Ultraconserved elements

One investigation centred on ultraconserved ele-
ments (UCEs) — stretches of DNA (greater than
200bp) that have been conserved during evolution
and that are perfectly identical between species,
even between primates and rodents (113). Due to
the degree of their conservation, and the fact that
they are often located in the vicinity of genes
involved in developmental regulation, they are
considered likely to harbour critical biological
functions. However, UCEs have been compromised
during evolution, and the resulting UCE variance
is concentrated in non-coding sequences, function-
ing as, and/or containing, cis-regulatory elements
that control gene expression. Therefore, UCEs and
variations in them chiefly influence gene regula-
tion. It is therefore significant that UCEs are so
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variable in primate species: 695, 653, and 635
UCEs exist in rhesus macaques, chimpanzees, and
humans respectively, of which just 459 are shared
in all three species (114). Conspicuously, UCEs
have disappeared at a greater rate in humans. At
least 26% of ancestral UCEs have diverged in
hominoids, and a further 17% show comparative
sequence changes in humans. Such variation, par-
ticularly as UCEs are often associated with tran-
scription factor genes, developmental genes and
genes of the CNS, is thought to have impacted spa-
tial and temporal gene expression patterns of key
gene regulatory and signalling networks, and
therefore to have contributed to species-specific
characteristics and variation in primates (114).

RNA editing

An additional factor which affects gene expression,
is adenosine-to-inosine RNA editing, in which an
enzyme converts adenosine (A) residues to inosines
(I) in gene transcripts. The resulting inosines are
read by the cell’s translational and splicing machin-
ery as guanosine (G) residues. This occurs in many
loci in several thousand genes, resulting in altered
gene expression via alternative splicing, mRNA sta-
bility, nuclear retention, and miRNA biogenesis and
targeting, and altered properties and functions of
gene products via amino acid sequence changes
(115). The A–I editing rate and the resultant
changes in gene function and expression are higher
in humans than in NHPs (including rhesus
macaques), due to primate-specific Alu sequences.
Furthermore, this appears to particularly affect the
human brain, via genes associated with neuronal
functions and neurological diseases including bipo-
lar disorder, motor neuron disease, Alzheimer’s and
Parkinson’s diseases, schizophrenia, multiple scle-
rosis, and amyotrophic lateral sclerosis, as well as
genes involved in immune function, inflammation,
and cardiovascular diseases (115). 

Differences in genetic sequences 

Differences in gene coding sequence will, of course,
directly impact gene function, and there are various
examples of notable differences between humans
and the model species used in biomedical research
and testing. Loss of gene function — for instance, via
mutation and exon deletion — has been linked to
important human-specific phenotypes and human
evolution (see 42). Similar mutations and deletions
have also been linked to species-specific characteris-
tics in the two main types of macaques used in bio-
medical research, namely the rhesus (M. mulatta)
and cynomolgus (M. fascicularis) macaques. Overall,
the general sequence identity between these two
species is 99.21%, compared to a similarity between

cynomolgus macaques and humans of 92.83% (19),
and between rhesus macaques and humans of
93.54% (7). However, this simple sequence compari-
son is superficial and misleading. Including small
genomic insertions and deletions, for instance,
human–rhesus macaque identity decreases from
around 93% to 90.76% — a figure that would be
lower still, if regions that were difficult to align were
also included (7).

More in-depth analyses

Ebeling et al. (19) went significantly further with
their analysis, over and above a simple sequence
comparison. In comparing protein-coding tran-
scripts from all three species, they limited their
scope to NHP transcripts that were related to
human transcripts (i.e. were not NHP-specific).
They found that (of around 11,000 mRNAs exam-
ined) the identity of transcripts between the two
macaque species was high, typically ranging from
99.5–100%. Modal sequence identities for human–
rhesus macaque transcripts were 94.6% (5´-UTRs),
97.9% (CDSs) and 93.4% (3´-UTRs); and for
human-cynomolgus macaque, transcripts were
94.6% (5´-UTRs), 97.7% (CDSs), and 92.7% (3´-
UTRs). Notably, these compared to human–chim-
panzee identities of 98.7% (5´-UTRs), 99.3%
(CDSs), and 97.9% (3´-UTRs) (116). As expected,
the monkey identities are significantly lower, and
the consequences of this are discussed later. In the
same study, Ebeling et al. also investigated genes
of pharmacological relevance in the same three
species:
a) The solute carrier protein (SLC) gene family is

large, and consists of 55 sub-families encoding
at least 362 proteins that mediate the transport
of organic solutes across cells and organs.
Specifically, the sub-family ‘solute carriers for
organic ions’ (SLCO) is pharmacologically rele-
vant, as its products transport molecules to the
liver for detoxification by cytochrome P450 and
other metabolic enzyme systems. As a result,
the human–M. fascicularis inter-species amino
acid differences found in all SLCO family mem-
bers, ranging from 0.75% to 9%, are likely to
have functional consequences, as are the 1–6%
amino acid differences identified in P450 vari-
ants in both species of macaque, which will
adversely affect the translational value of
macaque drug data for humans (19).

b) Inter-species differences were also noted in bio-
markers of toxicity-mediated immune activa-
tion, which are used in drug safety studies to
flag potential problems. Important genes
showed amino acid differences of up to 10%;
some, such as tumour necrosis factor (TNF) and
interleukin-10 (IL-10), failed to cross-react in
ELISA tests, despite amino acid identities of
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97.3% and 95.9%, respectively. Also of concern
was an inter-animal variability in biomarker
expression of up to three log2 units, which led
the authors to suggest that all monkeys used
pre-clinically should be assessed for their
expression of these biomarkers, so that outliers
could be eliminated. Of course, this is not done
in practice: far from making their use more
human-relevant, this suggestion is simply illus-
trative of the difficulty in extrapolating any
data from a variable population of monkeys to a
variable population of humans.

Also of pharmacological relevance, inter-species
differences in efflux transporters of hepatocytes
have also been identified (see 117). These are
important, due to the role of biliary excretion in
the elimination of xenobiotics and related
metabolites, in which differences may result in
variations in systemic drug exposure and hepato-
toxicity. In spite of knowledge of biliary clearance
being central to the prediction of pharmacokinet-
ics and the pharmacological and toxic effects of
drugs, confounding species differences have been
widely recognised for some time. For example,
marked differences have been demonstrated in
the activities of hepatocyte multi-drug resistance-
associated proteins (MRP) and breast cancer
resistance protein (BCRP) across species, includ-
ing humans and monkeys, which are believed to
contribute to species differences in in vivo hepa-
tobiliary excretion. These results led to the con-
clusion that “…interspecies differences in BCRP/
Bcrp functions need to be taken into consideration
in the allometric prediction of hepatobiliary
transport of its substrates”, and that primary
hepatocytes, either fresh or preserved, are a use-
ful in vitro model for the prediction of human
biliary transport.

Overall, human–rhesus macaque orthologous
genes of ‘high confidence’ have a 97.5% identity at
both nucleotide and amino acid levels (7). The same
authors reported that a typical human gene differs
from its rhesus macaque orthologue by 12 non-syn-
onymous and 22 synonymous substitutions, com-
pared to fewer than three and five, respectively, for
the chimpanzee. In addition, 89% of rhesus
macaque and 71% of chimpanzee orthologous pro-
teins differ in amino acid sequence to some degree.
The same study also identified 67 genes (many of
which were associated with immune functions) as
being positively selected across all branches of the
phylogeny, specifically: two in humans, 14 in chim-
panzees, and 131 in rhesus macaques. Finally, it
was noted that several human-specific loci, when
mutated, produced “profound clinical phenotypes”,
including severe mental retardation, and that
“…the basic metabolic machinery of the macaque
may exhibit functionally important differences
with respect to our own” (7).

Differences in immune response

Furthering our understanding of the biomolecular
complexities of the immune response, both in its
protective role and also as the mediator of a vast
range of autoimmune diseases, is confounded by
the extrapolation to humans of results obtained in
experimental animals. Some examples are out-
lined here:
— IL-8 has a crucial role in various immune

response mechanisms, namely: chemoattraction
of neutrophils, T-cells, basophils and NK cells;
angiogenesis; and the modulation of expression
of adhesion and MHC molecules. A comparative
study in humans and four types of NHP identi-
fied differences in IL-8 receptors (IL8R). In
humans, two genes encode IL8RA and IL8RB.
The rhesus macaque and orang-utan IL8RA
homologues, however, are pseudogenes, as they
contain a 2bp insertion that has created multi-
ple stop codons, while the IL8RB homologue is
3% different to human IL8RB at the amino acid
level (118).

— A comparison of the MHC between humans and
cynomolgus monkeys showed differences at
both nucleotide and protein levels. MHC class I
genes showed “weak amino acid similarity (<
90%)” to human sequences, with 109 amino acid
substitutions identified, located in various
regions of the proteins, including those involved
in binding specificity (64). While some variation
would be expected in these cases, due to the
known intra-species polymorphisms in these
molecules, there may still be some inter-species
functional significance. Furthermore, while
MHC class II genes and gene products showed
general similarity to their human homologues,
several amino acid differences were recorded,
which “may represent basic differences in the
immune responses between cynomolgus mon-
keys and humans” (64).

— Differences between Fc receptors in humans
and Southern pig-tailed macaques have been
identified, which have implications for the
development and testing of new vaccines and
therapeutic antibodies, including those for
HIV/AIDS and some cancers (119). Fc receptors
are cell surface molecules, primarily on effector
leukocytes, which bind IgG antibodies to pro-
vide adaptive immunity (Figure 1). There are
three classes of IgG FcRs in humans (FcγR
I–III): the two major genes of the human FcγRII
family encode FcγRIIa and FcγRIIb, and their
splice variants, which have activating and
inhibitory roles respectively in immune
responses. Trist et al. (119) identified 26 con-
served amino acid differences between human
and pig-tailed macaque FcγRIIa, polymorphic
variation of FcγRIIa between individual
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macaques, and 23 inter-species amino acid
differences in FcγRIIb.

These differences and polymorphisms result
in a hierarchy of binding of human IgG1 and
IgG2 antibodies, with consequences for IgG FcR
interactions, not only in pig-tailed macaques,
but also in rhesus and cynomolgus macaques,
and other NHPs. They also demand caution in
interpreting results of antibody (Ab)-based
effects, as: “…Ab therapeutics, especially IgG2,
may not behave in M. nemestrina or other
macaque species as they may be expected to in
humans”; “…the activities of mAbs designed to
alter interactions between human Abs and
huFcRs may not be faithfully recapitulated in
preclinical studies in non-human primates, or
at least in macaques”; “Similar caveats may
apply to viral pathogenesis studies in macaques
of human infections”; and “…interspecies and
polymorphic differences…may translate to
alterations of Ab-induced inflammatory out-
comes in vivo in NHPs that are distinct from
those in humans”.

— Even within the same species, variability of
experimental results is frequently a confound-
ing factor, often due to genetic variability
within the population studied. Due to these

“highly variable” findings, thought to underlie
acknowledged pharmacokinetic, toxicological
and biochemical differences between individual
monkeys, genetic polymorphisms were investi-
gated in 49 genes of the immune system in
cynomolgus macaques — the “standard species
used pre-clinically for evaluating efficacy and
toxicity of therapeutic drug candidates and vac-
cines” (120). A total of 580 polymorphisms were
identified in these 49 genes: some were pre-
dicted to alter transcription factor binding;
some to interfere with miRNA target sites; oth-
ers caused frameshifts or generated premature
stop codons. These polymorphisms suggested
that the variable immune responses seen in dif-
ferent cynomolgus macaques have a genetic
basis, and also may be associated with auto -
immunity, metastasis, wound healing, cell
adhesion, coagulation, cell differentiation,
myco bacterial infections and other infectious
diseases (see 120).

— It has been known for some time that polymor-
phisms in the promoter region of the TNF gene
affect the susceptibility of humans to various
diseases, including autoimmune disorders,
some cancers and malaria (see 121). It is there-
fore surprising that macaques, which are exten-

Figure 1: Schematic representations of elements of antibody-mediated immunity 

a) Illustrates how Fc receptors on the surface of effector white blood cells confer immunity by binding to antibodies
associated with pathogens; b) illustrates how Fc receptors might be involved in cancer immunotherapy, i.e. by linking
cancer cells to immune cells that can destroy them. As described in the main text, it is clear how Fc receptor
variability, such as species differences, may result in differences in immune responses to pathogens, and in the
activity of therapeutic monoclonal antibodies (cartoons obtained from Wikimedia.org).
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sively used in malaria research, had not, until
recently, had the promoter region of their TNF
genes explored, especially because of the exis-
tence of several salient species differences
between malaria pathogenesis in humans and
macaques. An analysis of 40 rhesus and
cynomolgus macaques, from different geograph-
ical regions, has shown that their susceptibility
to different malaria parasites depends on these
factors. For example, cynomolgus macaques
from the Philippines develop mild, chronic
infections, while infections in those from
Mauritius are severe.

The Plasmodium knowlesi and Plasmodium coat-
neyi parasites cause acute, often fatal, infections in
rhesus macaques, but only mild, chronic infections
in cynomolgus macaques. Flynn et al. (121) showed
that these differences are the result of the highly
variable nature of the TNF promoter in both
species of macaque, existing as 20 haplotypes
defined by 14 SNPs, of which half might be func-
tionally relevant. They also discovered that specific
SNPs associated with susceptibility to malaria in
humans are not shared with macaques, and noted
that species differences in TNF regulation “war-
rant caution when macaques are employed as
models to study disease pathogenesis and suscep-
tibility”. Interestingly, and highly pertinent to the
use of Plasmodium-infected NHP models in
research into human malaria, there is also marked
genetic variability in the malaria parasites them-
selves. For example, most human deaths are due to
P. falciparum, which is well adapted to human
hosts. However, it is only “distantly related” to
even other human Plasmodium species, such as P.
vivax, and even more so to those better adapted to
other apes, such as P. reichenowi and P. gaboni
(122). Crucially, though the parasites share simi-
lar genetic backgrounds, there are important dif-
ferences: hundreds of known Plasmodium proteins
and putative genes are unique to individual
species, and are believed to be responsible for dif-
ferences in host specificity, pathogenicity, trans-
missibility and virulence (122, 123).

Neurodegenerative disease susceptibility 

Humans and NHPs have been investigated for dif-
ferences in their Tau genes, which are associated
with several human neurodegenerative diseases
(‘tauopathies’, such as Alzheimer’s disease to
which many NHPs are resistant. Given the high
degree of similarity of Tau genes across primate
species, it has been suggested that sequence differ-
ences may not be at the root of these phenotypic
differences, and instead that nucleotide differences
outside the coding sequences, perhaps with regula-
tory roles, must be the cause (124). Some notable

differences have been identified, however, particu-
larly in monkeys: for instance, different primate
species carry different numbers of a 59–60bp
repeat that exists in intron 9 of human Tau (e.g.
humans have a tandem repeat, cynomolgus
macaques just one), and an intronless gene called
Saitohin (situated within Tau exon 9 in humans) is
not present in the cynomolgus macaque (124).

Effects on enzyme activity and protein function

A study of acidic mammalian chitinases
(AMCases) in humans and cynomolgus macaques
revealed evolutionary and biochemical differences
(125). Though the relevance of the differences is
not yet known, they should be considered, because
AMCases might be associated with asthma pathol-
ogy, and because they are another example of how
subtle changes in genetic sequence may result in
significant changes in enzyme activity, with conse-
quences for the evaluation of drugs and the use of
monkeys to model human diseases. It was found
that human and cynomolgus macaque AMCases
had similar expression and pH profiles, but dif-
fered in genetic sequence and enzymatic proper-
ties, which were 50-times more catalytically
efficient in the latter (125).

The study of the MCPH1 gene — one of at least
seven key genes known to be involved in the regu-
lation of brain size during development — illus-
trates how specific mutations can result in
functional changes, leading to altered regulatory
effects in downstream genes, and ultimately sig-
nificant species-specific phenotypes and evolution
(126). The regulatory effects of human and rhesus
macaque MCPH1 were different in three out of
eight downstream genes tested, and the human-
specific mutations altered the regulatory effects on
the downstream genes.

HIV/AIDS models

NHP models (usually rhesus and pig-tailed
macaques) are used in HIV/AIDS research, and
are typically infected with SIV, or an SIV-HIV
hybrid known as SHIV. This is because the tar-
get cell of HIV (CD4+ T-cell) is poorly receptive
to entry by HIV-1 in macaques, with the excep-
tion of a few strains of the virus that have been
adapted in the laboratory (see 127). A study of
the CD4 receptor in both rhesus and pig-tailed
macaques and in humans has shown that this
difference in activity and specificity is due to a
single amino acid residue at position 39, illus-
trating how such small differences can exert
such significant effects. Moreover, differences
between human and simian immuno deficiency
viruses (HIV and SIV, respectively) are known to
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be relevant to the interpretation, and confound-
ing nature, of the SIV-infected macaque model of
human HIV/AIDS. These significant differences,
it is argued in some circles, seriously question
the applicability of SIV/macaque models to
human vaccine development, and are because
HIV-1 evolved over a century in humans, while
SIVs used in macaque research evolved in sooty
mangabeys (SIVsmm) over millennia (see 128).

A study of 20 independent isolates of SIVsmm
showed much lower diversity than HIV-1, probably
due to mutations that have accumulated over time,
as well as less selective pressure from immune
responses that differ in terms of anti-SIV antibody
titres, cytotoxic T-lymphocyte responses and
immune activation (128, 129). In addition, inter-
species genetic differences have been identified in
host factors that restrict retroviral infection. The
‘tripartite motif 5’ (TRIM5) gene, for example,
belongs to an approximately 70-strong gene family
that encodes many factors with antiviral activity
(see 130), which effectively restricts the host range
of HIV-1: rhesus and cynomolgus macaque TRIM5
restrict HIV-1 infection, but not SIVmac infection,
whereas human TRIM5 activity against these
viruses is very weak. Such species differences are
due to differences in amino acid sequences of a spe-
cific domain of the TRIM5 protein, which is illus-
trated by the finding that a single amino acid
change at position 332 of human TRIM5 (from argi-
nine to proline) confers potent restriction ability
against HIV-1 and SIVmac viruses. In spite of these
genetic differences, which lead to “differences in
immunology, pathogenesis, and diversity” between
SIV and HIV-1 (128), an acknowledgement that
“…current SHIV models do not reflect HIV-1 vari-
ants circulating globally and thus do not fully reca-
pitulate the viral factors that contribute to the
infection dynamics being studied” (127), and an
advisory caution that they “…should be considered
when extrapolating from SIV/macaque experimen-
tal results to HIV/human vaccine applications”
(127), some researchers maintain that NHPs
remain an “invaluable tool” (128). With the recent
passing of the HIV-infected chimpanzee as a usable
model, due to its comprehensive failure and poor
human relevance (1, 6, 131, 132), this is arguably a
claim with little or no substance.

Differences in RNA splicing

Splicing factors (complexes of RNA and proteins)
bind to specific sequences in pre-mRNAs during
transcription to remove introns, resulting in
mRNAs comprising exon sequences that are spliced
together, which in turn serve as templates for trans-
lation. Alternative splicing also takes place in most
genes, in which one or more exons may be removed
from pre-mRNA molecules, in addition to introns.

Such alternative exon usage enables multiple pro-
teins, often with different functions, to be generated
from the same gene, greatly increasing the scope of
the genome and proteome with major consequences
for the organism. Splicing differences result in vari-
ations in the stability, localisation and translation
of the mRNA molecules, and in the specificity, effi-
ciency, localisation and life cycle of the encoded
proteins (see 133). 

Although this may be considered a relatively
poorly studied field, there is some evidence of
species differences that affect splicing. For exam-
ple, splicing factors are differentially expressed in
humans and chimpanzees, including 43 in the
testes and 20 in the brain (134). A study by Reyes
et al. (133) examined the transcriptomes of five tis-
sues (heart, liver, kidney, brain minus cerebellum
and cerebellum) in six species (human, chim-
panzee, bonobo, gorilla, orang-utan and rhesus
macaque). They concluded that inter-species vari-
ability with regard to exon usage was dominant,
and much more variable than inter-species gene
expression, in agreement with prior findings show-
ing that “splicing variation between species, even
between equivalent tissues, exceeds the within-
species variation across tissues” (135, 136). Of
almost 120,000 exons studied in over 10,000 genes,
just 3% of the exons in 16% of those genes showed
conserved tissue-dependent usage between
humans and rhesus macaques. In addition, splic-
ing is affected via the action of mobile elements
(that disrupt or create splice sites) and A–I editing,
among others, as discussed earlier, and by
crosstalk between DNA methylation and histone
modifications (see the section on Epigenetic factors
above, and, for example, 82). 

The consequences of genetic differences:
Translation of data from NHP research to
humans

Given the extent of NHP use in research and test-
ing, as well as its ethical and financial costs, sur-
prisingly little critical analysis of its worth has
been conducted to date. It must be concluded that
the use of NHPs rests on an assumption, perhaps
based on anecdotal evidence, that it is predictive of
human biology and translates well. However, this
can only be assessed, and established, by compre-
hensive and critical scientific inquiry. What inves-
tigation has been done, however, is far from
supportive of the value of NHP use, or of its neces-
sity in the future. Much of the following evidence is
monkey specific, but more has been collated
against the use of apes, primarily chimpanzees
(131, 132, 137–139), and notably also considers the
genetic basis of the failures of chimpanzee
research in the same manner as this paper does for
monkeys (6).
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Toxicology and drug testing

With regard to NHP use in toxicology and drug
testing, no data categorically demonstrate the pre-
dictive nature of NHP tests for human toxicity.
The UK’s National Centre for the 3Rs (NC3Rs)
stated that there has “yet to be a comprehensive
scientific review of the rationale for [primate toxi-
city testing]” (140), and the Toxicology Working
Group of the UK Parliament’s House of Lords
Select Committee on Animals in Scientific
Procedures opined that “the formulaic use of two
species in safety testing is not a scientifically justi-
fiable practice, but rather an acknowledgement of
the problem of species differences in extrapolating
the results of animal tests to predict effects in
humans,” and, “the reliability and relevance of all
existing animal tests should be reviewed as a mat-
ter of urgency” (141). This means that NHPs are
currently being used in toxicological testing with
no scientific justification. Furthermore, single-dose
toxicity tests, to which many non-human primates
in regulatory safety tests are subjected, have been
scientifically discredited (142): the cynomolgus
macaque showed the drug TGN1412 (which almost
killed six healthy clinical trial participants in
2006) to be safe, even at a dose 500 times higher
than the human dose (143); the International
Conference on Harmonisation (ICH), which har-
monises medical testing requirements, notes that
in regard to drug testing, primates “can differ from
humans as much as other species” (144); in dis-
cussing whether primates or dogs were the more
predictive for liver toxicity in humans, a
researcher at AstraZeneca described “an inbuilt
prejudice”, and though there is an assumption that
primates would “more closely mimic subsequent
effects that might occur in man... there is little evi-
dence to show that” (145); in a review of 25 cyto-
toxic cancer drugs, toxicity data from primate (and
dog) studies “grossly overpredict[ed] hepatic and
renal toxicity” in patients (146). In fact, evidence
has shown that:
a) the primate tests for hepatic, renal and respira-

tory toxicities yielded high rates of false posi-
tive results when compared with subsequent
human data (147);

b) results from NHPs in developmental toxicity
testing correlate with known human teratogens
only 50% of the time, less even than results
from more evolutionarily distant species such
as rats, hamsters and ferrets (148–150);

c) a recent statistical study of papers assessing
the predictive nature of NHPs (among other
species) in toxicology, noted that incorrect sta-
tistical definitions were often used that skewed
the data in favour of the animal models. When
the correct statistical definitions were used, it
was discovered that there was no statistically

credible evidence that NHP toxicology data
“contributed any predictive value, either sepa-
rately or in combination [with e.g. dog data]”
(151);

d) an analysis of the prediction of drug-induced
liver injury (DILI) by animal models revealed
that NHPs were less predictive than rodents —
which themselves failed to predict up to 51% of
effects in humans (152); and

e) since their commercial introduction in the early
1980s, many non-steroidal anti-inflammatory
drugs (NSAIDs) have been clinical failures. For
example, having been found safe in year-long
studies in rhesus monkeys, benoxaprofen
caused thousands of serious adverse events and
dozens of deaths within three months of its
approval and marketing (153).

The lack of justification is not surprising, in view of
the fact that the failure rate of new drugs in
human trials is at record levels: 95% of drugs that
enter clinical trials, having obtained Investigative
New Drug approval based largely on animal test
data, do not go on to obtain FDA New Drug
Application approval for marketing (154). Further -
more, of the small percentage of drugs entering
human clinical trials that do gain FDA approval,
half may go on to be withdrawn or re-labelled post-
marketing, due to severe or lethal adverse effects
not detected in the animal tests. These approved
drugs are directly responsible for a level of adverse
drug reactions that constitutes one of the leading
causes of death in the USA (155) and the UK
(156).

Biomedical research

The evidence against NHP research is not confined
to drug development and testing. In biomedical
research, a wide range of evidence specific to mon-
key use has been published:
— In HIV/AIDS research, the use of macaques is

widely considered to lead to failure and to be of
questionable human relevance (157–164). Many,
if not all, of some 100 different types of HIV vac-
cines were tested in monkeys with positive
results, yet none provided protection or thera-
peutic benefit in humans, due to major differ-
ences in SIV-infected macaques compared to
HIV-infected humans (157, 158, 162, 165–167).

— With regard to Alzheimer’s disease (AD), many
scientists have spent years trying to create an
AD animal model with significant human rele-
vance, but have failed (168–171), and have
made very little progress in understanding its
various pathologies. For example, plaques and
tangles in the brain are the hallmark of AD in
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humans, but not in NHPs (172). Humans and
great apes possess a specific type of projection
neuron in the anterior cingulate cortex, which
is severely affected in the degenerative process
of AD (173). Also, the neuropeptide galanin,
that regulates cholinergic basal forebrain (CBF)
function, differs in its chemoanatomic organisa-
tion across species: in monkeys, all CBF neu-
rons co-express galanin, whereas in apes and
humans, galanin is found within a separate
population of interneurons that are in close
apposition to the CBF perikarya (174). Because
galaninergic fibres hyperinnervate CBF neu-
rons in AD, inhibiting acetylcholine release in
the hippocampus, this may exacerbate choliner-
gic cellular dysfunction in AD. This difference
could be critical when attempting to create an
NHP AD model. NHP use can also cause direct
human harm, in addition to delaying progress
and diverting research funds from more-
relevant methods. The once much-vaunted AD
‘vaccine’, AN-1792, dramatically slowed brain
damage in an AD mouse model, and “was well
tolerated when tested in several animal species,
including monkeys” in experiments prior to
clinical trials (175, 176). Despite the encourag-
ing NHP data, clinical trials were suspended
following CNS-inflammation and ischaemic
strokes in 15 participants (177).

— In stroke research, significant species-specific
and even strain-specific differences in response
to ischaemic injury exist (178). Decades of
research have resulted in thousands of publica-
tions reporting more than 1,300 successful
stroke interventions in animals (including
NHPs), including more than 700 for acute
ischaemic stroke, none of which has led to
human benefit (179, 180). Some experts have
labelled stroke animal models a failed para-
digm: they have argued convincingly for
human-based research (181, 182); lamented
that animal models of stroke could not be trans-
lated to humans (183); and stated that “The
repeated failures of laboratory-proven stroke
therapies in humans can be due only to the
inapplicability of animal models to human cere-
bral vascular disease” (184), “Ischaemic stroke
is a case study in failed translation” (185),
“After so many years of failure, it is appropriate
to ask whether researchers should continue to
pursue neuroprotective strategies for stroke”,
and “The stroke community needs to think long
and hard about whether these animal models
are financially and ethically viable” (186).

— Parkinson’s disease (PD) has been studied using
neurotoxic chemicals to induce superficial PD-
like symptoms, predominantly in marmosets
and macaques. Fundamental differences in the
onset, type and persistence of symptoms exist in

all the models, in addition to physiological dif-
ferences such as the absence of Lewy bodies in
NHPs. Species differences are known to play a
role in the clinical expression, as well as in the
cellular specificity of the lesions. For example,
striatal degeneration in humans is frequently
associated with dyskinesia, whereas striatal
excitotoxic lesions alone are not sufficient to
induce dyskinesia or chorea in NHPs. Also, the
time-course of nerve cell degeneration, which
normally evolves over several years in neurode-
generative diseases in humans, is for practical
reasons replaced by a much shorter period of
time in NHP models (187). Deep-brain stimula-
tion of PD patients, often claimed to have been
developed through NHP experiments, was actu-
ally discovered serendipitously in a human
patient and arguably owes nothing to NHPs for
its advancement (188, 189).

Other notable species differences

In addition to studying the genetic differences
between humans and NHP model species, many of
which are summarised in this review and which
underlie the above-described empirical species dif-
ferences, there are other, non-genetic studies of
species differences — including differences
between types of monkeys, as well as between
monkeys and humans — worthy of note in any cri-
tique of using monkeys as models for humans. The
outcomes of several of these studies are noted here,
since, though they were not expressly genetic stud-
ies, the differences identified have a genetic basis.

Firstly, a review in 2003 outlined an important
consideration that has since been underlined by
genetic studies: “There is no such thing as a
generic monkey” (190). Many species are used in
research in many scientific areas, namely prosimi-
ans (e.g. galagos and lemurs), NWMs (e.g. mar-
mosets, tamarins and squirrel monkeys), OWMs
(e.g. macaques, baboons and African green mon-
keys), and, at least until recently, chimpanzees.
Notable biological differences among species, even
among closely related species such as rhesus and
cynomolgus macaques, include: glucocorticoid
resistance/circulating steroid levels, ovarian histol-
ogy and steroid receptor biology, and disease sus-
ceptibilities and manifestations. Even considering
that perhaps 4 or 5 species are commonly used in
toxicology, and less than 20 genera in laboratories
generally, this is scope for much confounding data.
For instance, many monkey-specific diseases
(including various viruses, parasites and cancers)
are recorded as having confounded research stud-
ies (190). This review also notes caution over inter-
species and geographical intra-species differences
among macaques. Such caution is evident else-
where in the literature. For example, it is noted

Monkey-based research on human disease                                                                                                                                305



that rhesus macaques of Indian origin were used
most often in HIV/AIDS research, simply because
this was the species supplied to laboratories by
breeding facilities in the USA (191). Then, a short-
age of these animals prompted a search for an
alternative, and attention was switched to the
Chinese rhesus macaque, as it was “more readily
obtainable”. However, differences in susceptibility
to SIV infection and disease were noted between
the two, mirroring differences also seen among
species of macaque (rhesus, cynomolgus and pig-
tailed). It was concluded that “…even subtle
genetic differences between two subspecies (races)
of primate may promote significant differences in
the pathogenicity of the same virus” — a phenom-
enon that had also been seen in cynomolgus
macaques infected with poliovirus, for example,
where susceptibility could vary up to 10,000-fold
depending on geographic origin; and in the course
of disease following the infection of macaques with
various malaria parasites (see 191). Other note-
worthy differences have been found in the follow-
ing areas of biomedical research:
a) In neuroscience, the mapping of anatomical

brain networks and characterising neural con-
nections (known as the ‘connectome’) via diffu-
sion tractography helps the understanding of
brain function, and as such it has been a focus
of research in humans, though not to nearly the
same degree in NHPs. One recent study, how-
ever, analysed, in parallel, the human, rhesus
macaque and chimpanzee connectomes, and
reported major species differences in the archi-
tecture of the inferior parietal cortex, polar and
medial prefrontal cortices (192). These findings
augmented previous studies demonstrating a
greatly expanded, lightly myelinated region of
prefrontal cortex in humans when compared
with that in rhesus macaques and chimpanzees
(193), and a more gyrified prefrontal cortex in
humans compared to other primates, even con-
trolling for differences in brain size (194).
Functional consequences of these differences
may involve sensory perception, visceral func-
tions, higher order cognitive functions, and
emotional and reward-related behaviours (see
192). 

b) Several studies have noted a considerable num-
ber of genes associated with cancer, in terms of
human–macaque inter-species differences in
the occurrence and biology of tumours in these
species. For instance, while colon neoplasia is
common to both humans and rhesus macaques,
the development of benign and precancerous
polyps is not seen in the latter; and, unlike in
humans, prostate and lung cancers are rare in
rhesus macaques (195).

c) The reporting of gene differences involved in
drug transport and metabolism is also preva-

lent, and again, these differences manifested
in phenotypic differences. For example: some
functional differences in CYP enzymes
between species have been established, in
spite of high sequence identities, such as mar-
moset and Japanese macaque CYP1A2;
CYP2C76 is present in cynomolgus and rhesus
monkeys, but not in humans, and is known to
be partly responsible for differences in drug
metabolism in monkeys and humans; expres-
sion differences (and possibly transactivation
differences) exist in CYP1A1 and CYP1A2;
substrate specificities of CYP2Cs may differ;
quantities and metabolic activities of CYP2D
and CYP3A4 differ; several CYPs are affected
by CNVs; and null alleles of various CYPs
exist in different species and within species
arising from different geographical locations
and even from different colonies, meaning
“…the origin of the animals could be an impor-
tant factor for successful drug metabolism
studies using macaques” (196). 

Discussion and Conclusions

Public opposition to animal experiments — partic-
ularly those involving NHPs — has been increas-
ing for some time and is at a record level. A
Europe-wide independent poll, conducted by
YouGov in 2009, showed that 79% of respondents
were opposed to experiments on animals not
related to serious or life-threatening human condi-
tions, and 81% believed new EU legislation should
prohibit any experiments that would cause pain or
suffering to primates (197). In spite of this level of
opposition, experiments involving NHPs, and the
number of NHPs used in them, continue to
increase in parallel with it (see Introduction), with
approximately 80,000 used in the last fiscal year
for which figures are available in the USA and in
the EU; in the UK, figures for 2013 (3) reveal a rise
in the number of animals used to 2,202 (16 more),
and in procedures to 3,236 (216 more). There has
been a “steep increase” in the number of cynomol-
gus macaques being imported into the USA in
recent years: 126,000 individuals were imported in
2000–2005, for example, from breeding farms in
Indonesia, the Philippines, Mauritius and
Indochina (198, 199), which breed them from wild-
caught monkeys.

Two opposing viewpoints 

While opposition to NHP experimentation may
have a largely ethical and welfare-related basis,
defence of the rise in NHP use rests on scientific
necessity: i.e. that, because of the high level of
genetic similarity of monkeys to humans (around
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90%), they must be good models, without which it
would be difficult — if not impossible — to develop
safe and effective new drugs for humans, and to
gain a deeper understanding of human diseases, in
order to facilitate the design of treatments and
cures.

Both sides of the argument have often essen-
tially lacked a scientific perspective, as, based on
the widespread assumption of human relevance of
NHP use by those who commission, fund and con-
duct it, little critical analysis of its scientific worth
and significance for human medicine had been
attempted. Many of the critical studies that do
exist have been included here, and in other reviews
and reports published over the past decade (e.g.
161, 200–207). Notably, advocacy of NHP experi-
ments based on their mere involvement in
research, or on ‘promising’ results obtained in
monkeys, is not sufficient. For them to be scientif-
ically justified, they must be shown to be predictive
of human biology, crucial to any biomedical break-
through, and no alternative to them must exist.

The scientific argument against their use has
intensified in recent years. Perhaps understand-
ably, much of the criticism has come from scien-
tists affiliated to animal welfare groups, as
scientists who practise NHP research are reluctant
to criticise it, even though the scientific method
demands that they do so. Hypotheses must be
tested; do claims that NHP experiments are pre-
dictive of human biology stand up to detailed
scrutiny? Examples of their poorly predictive and
confounding nature abound, which complement
and augment the burgeoning ethical/welfare case
against their use in research. Yet, superficial
‘genetic similarity’ arguments continue to be prof-
fered in defence of their use.

The genetic argument

As long ago as 1975, it was first suggested —
partly based on observations that, superficially,
coding sequences of humans and chimpanzees
were highly similar — that species differences
could not be sufficiently explained by genomic
sequence differences, but must be mostly due to
differences in how genes were regulated, i.e. that
regulatory elements were responsible for qualita-
tive and quantitative gene expression differences,
resulting in major phenotypic and physiological
differences between primate lineages (208, 209).
Gene expression alone, or at least to a large extent,
is thought to be at the root of inter-species pheno-
typic differences, including, for instance, critical
differences in liver function between NHP species,
due to changes in transcription factor expression
(78), and also human-specific features, such as
highly developed language and complex tool-mak-
ing (210).

The ethical argument 

Though not the focus of this review, it would be
remiss not to include some salient considerations
of suffering, given that the scientific worth of NHP
use in science cannot be used in isolation as an
argument to defend it, and because the inherent
stress and distress directly affect experimental
results via modulation of gene expression. While it
is obvious that NHPs are able to suffer, consider-
able empirical evidence of sentience and capacity
to suffer supports this common-sense view. Rhesus
macaques, for instance, can perform rudimentary
arithmetic, think using symbols (211), possess an
essential component of ‘theory of mind’ (the ability
to deduce what others perceive on the basis of
where they are looking; 212), refuse to take food
when this means other individuals would receive
electric shocks (213), have a social system with
rules for specific relationships and social behav-
iour, often developing lifetime social bonds (214),
and show highly innovative behaviour, which is
only surpassed by Pan, Pongo and Cebus (215). 

Experimentation itself causes harm. The
Organisation for Economic Co-operation and
Development (OECD; 216) and the Nuffield
Council on Bioethics (217) list many conditions and
clinical signs that may occur during chronic toxic-
ity and carcinogenicity tests, which indicate an
animal is experiencing pain and/or distress. Drugs
to relieve pain and distress may be withheld, over
concerns that they might alter the toxicity profile
of the chemical being tested (218). Neurological
and vision experiments often cause significant suf-
fering, as they involve craniotomies, head stereo-
taxy via bars implanted into the skull and/or ears,
coils implanted into the eyes to monitor eye move-
ments, and often deprivation of food or water for
many hours prior to the experiments, to motivate
the animals to perform visual tasks. NHPs are
known to have been kept, instrumented, in single
caging for two years, while being used and re-used
in vision research (219). In Parkinson’s disease
research, neurotoxins such as MPTP might be
injected directly into monkeys’ brains to damage
them, causing them to experience severely
restricted mobility, including an inability to feed or
groom themselves (220, 221). In stroke research,
head and neck arteries are blocked, which involves
craniotomy, and sometimes removing an eye and
cutting the optic nerve to access the brain via
drilling through the eye socket (222, 223).
Sometimes related procedures are carried out
whilst the monkeys are awake and restrained in
primate chairs to avoid the effects of anaesthesia
(224).

Suffering may be psychological, as well as phys-
ical, evidenced by many macaques kept in stan-
dard laboratory cages exhibiting stereotypical
behaviour (225). One study noted that 89% of
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singly-housed rhesus macaques exhibited at least
one abnormal behaviour (226), while another
showed that self-injurious behaviour occurred in
10% of NHPs (227). The use of primate restraint
chairs causes immense psychological stress and
extreme distress, associated with physical prob-
lems such as inguinal hernia (a protrusion of
abdominal-cavity contents through the inguinal
canal), and rectal prolapse (228). NHPs also suffer
due to their anticipation of painful procedures
based on past experiences (229, 230), as well as
due to laboratory confinement (231) and the result-
ing lack of agency and social interactions (232,
233). Furthermore, it is now well-known that even
routine procedures that monkeys and other ani-
mals undergo in laboratories, such as simple han-
dling, blood collection and drug administration,
cause significant physiological stress (234).
Transportation, change of environment and expo-
sure to new laboratory staff and procedures induce
changes in body weight, hormone levels, heart rate
and blood pressure, all of which are indicators of
stress (235, 236). Marmosets are well-known for
avoidance behaviour during attempts at capture,
and often become stressed and violent, even
toward themselves; indeed, cage-capture of various
NHP species is associated with signs of stress and
distress (237). 

These ethical considerations are directly linked
to scientific concerns. Stress-related elevations of
heart rate, blood pressure and a variety of hor-
mone levels (including cortisol) influence the nerv-
ous and immune systems, and affect scientific data
obtained from animals in laboratories (238–241) —
far from helpful when researching new drugs and
infectious agents (234). Handling has been shown
to interfere with immunity (and therefore, for
example, tumour growth and susceptibility to
infectious disease; 242, 243), and this effect varies
with regard to species, strain, age and sex. This all
has important methodological implications (243).
Indeed, warnings have been issued about the con-
sequences of disregarding the effects of stress due
to laboratory routines (239–241), yet this remains
under-reported, or not reported at all, in scientific
studies (244).

The effects of harm on gene expression

All the above attributes illustrate how monkeys
can be harmed through psychological and emo-
tional stress and distress, such as that caused by
capture, confinement, transport, poor environ-
ments, and experimentation: harm that has been
acknowledged in detail by the European Com -
mission’s own analysis (245). This harm is an
important factor for the cost–benefit analysis of
animal experimentation, which must swing the
balance appreciably against the use of NHPs in

research. However, this harm also affects experi-
mental results via stress-induced changes in gene
expression; changes that exacerbate inherent
inter-species and intra-species differences in gene
expression due to evolution, speciation and adap-
tation. These differences affect all levels of gene
expression and protein function, as detailed ear-
lier: genomic rearrangements, mobile DNA ele-
ments (e.g. LINEs and SINEs), gene duplications
and deletions, copy number variation, differences
in transcription factors and binding sites, DNA
methylation, miRNAs and binding sites, gene edit-
ing and splicing, all contribute to human–monkey
biological differences and have serious ramifica-
tions for the extrapolation of monkey experimental
data to human medicine.

Empirically, we now appreciate more than ever
the degree to which many diseases and disorders
affect humans and non-humans differently (see
above, and e.g. 73), and how difficult and unreli-
able is the extrapolation of drug toxicology and
safety data from animals to humans (e.g. 246, 247).
Not only is this phenotypic evidence mounting, but
also the genetic underpinnings of it are becoming
increasingly well-understood. The small degree of
genetic difference suggested by crude and superfi-
cial alignments of shared sequences, especially
between primates, are of little relevance to the cen-
tral issue, which is the human relevance of NHP
experimental data. As first suggested by King and
Wilson in 1975 (208), evidence has now shown that
differences in gene regulation, which result in
widespread phenotypic species differences, are at
the root of the lack of human relevance of animal
models. Notably, the relatively few changes in
genetic sequence appear to preferentially affect
genes and genetic control elements with the power
to modulate the expression, stability, and reper-
toire of products of hundreds, if not thousands, of
other genes: transcription factors and their bind-
ing sites, splicing factors and their binding sites,
miRNAs and siRNAs and their binding sites, and
so on. Furthermore, it seems that the expression of
genes principally involved in the function of the
immune system is predominantly affected. This
has clear consequences for the use of monkeys in
scientific research, which is dominated by the
study of diseases involving, at some stage, the
immune system. Notable differences in gene
expression in the liver — the major metaboliser of
drugs — are also of serious concern in the use of
monkeys in drug testing.

Lessons to be learned

The use of monkeys in science is increasing, in
spite of the multi-faceted evidence against its effi-
cacy: from 2000–2005, PubMed listed 3,713 papers
involving rhesus macaques (7); a search for rhesus
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macaque papers published in the five years up to
July 2014 identified 5,367 publications, with a fur-
ther 2,227 involving cynomolgus macaques (20).
Evidence shows not only that monkeys are a poor
model for human biomedical research, but also
that they are so poor that monkey data rarely, if
ever, directly translate to human benefit and that
they can even impede medical progress. Moreover,
there is now evidence that shows why they are
such poor models: they are so fundamentally
genetically and biochemically different, in so many
crucial ways, that they can never constitute a good
model for humans. They can never be ‘human
enough’. The argument that monkeys must consti-
tute a good model for research on human diseases,
based on their ostensible genetic similarity to
humans, is unsound and should be dismissed.
Arguments that the greater understanding of
inter-species differences may improve the human
translation of animal models (e.g. 19) is uncon-
vincing and, ultimately, unhelpful. Only by moving
away from monkey research, and by fully embrac-
ing and adopting superior, more-humane and
human-specific alternative forms of scientific
inquiry, can treatments or cures for the many dis-
eases that blight the lives of hundreds of millions
of people be realised as quickly and as safely as is
possible. 
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