199 research outputs found

    Where\u27s My Coffee?

    Get PDF
    Non-fiction by Russ Baile

    Impact of seasonal variation, age and smoking status on human semen parameters: The Massachusetts General Hospital experience

    Get PDF
    BACKGROUND: To investigate the relationship of human semen parameters with season, age and smoking status. METHODS: The present study used data from subjects recruited into an ongoing cross-sectional study on the relationship between environmental agents and semen characteristics. Our population consisted of 306 patients who presented to the Vincent Memorial Andrology Laboratory of Massachusetts General Hospital for semen evaluation. Sperm concentration and motility were measured with computer aided sperm analysis (CASA). Sperm morphology was scored using Tygerberg Kruger strict criteria. Regression analyses were used to investigate the relationships between semen parameters and season, age and smoking status, adjusting for abstinence interval. RESULTS: Sperm concentration in the spring was significantly higher than in winter, fall and summer (p < 0.05). There was suggestive evidence of higher sperm motility and percent of sperm with normal morphology in the spring than in the other seasons. There were no statistically significant relationships between semen parameters and smoking status, though current smokers tended to have lower sperm concentration. We also did not find a statistically significant relationship between age and semen parameters. CONCLUSIONS: We found seasonal variations in sperm concentration and suggestive evidence of seasonal variation in sperm motility and percent sperm with normal morphology. Although smoking status was not a significant predictor of semen parameters, this may have been due to the small number of current smokers in the study

    Spatial Patterns in Herbivory on a Coral Reef Are Influenced by Structural Complexity but Not by Algal Traits

    Get PDF
    Background: Patterns of herbivory can alter the spatial structure of ecosystems, with important consequences for ecosystem functions and biodiversity. While the factors that drive spatial patterns in herbivory in terrestrial systems are well established, comparatively less is known about what influences the distribution of herbivory in coral reefs. Methodology and Principal Findings: We quantified spatial patterns of macroalgal consumption in a cross-section of Ningaloo Reef (Western Australia). We used a combination of descriptive and experimental approaches to assess the influence of multiple macroalgal traits and structural complexity in establishing the observed spatial patterns in macroalgal herbivory, and to identify potential feedback mechanisms between herbivory and macroalgal nutritional quality. Spatial patterns in macroalgal consumption were best explained by differences in structural complexity among habitats. The biomass of herbivorous fish, and rates of herbivory were always greater in the structurally-complex coral-dominated outer reef and reef flat habitats, which were also characterised by high biomass of herbivorous fish, low cover and biomass of macroalgae and the presence of unpalatable algae species. Macroalgal consumption decreased to undetectable levels within 75 m of structurally-complex reef habitat, and algae were most abundant in the structurally-simple lagoon habitats, which were also characterised by the presence of the most palatable algae species. In contrast to terrestrial ecosystems, herbivory patterns were not influenced by the distribution, productivity or nutritional quality of resources (macroalgae), and we found no evidence of a positive feedback between macroalgal consumption and the nitrogen content of algae. Significance: This study highlights the importance of seascape-scale patterns in structural complexity in determining spatial patterns of macroalgal consumption by fish. Given the importance of herbivory in maintaining the ability of coral reefs to reorganise and retain ecosystem functions following disturbance, structural complexity emerges as a critical feature that is essential for the healthy functioning of these ecosystems

    An environmental (pre)history of European fishing: past and future archaeological contributions to sustainable fisheries.

    Get PDF
    This paper explores the past and potential contribution of archaeology to marine historical ecology. The primary focus is European fishing of marine and diadromous taxa, with global comparisons highlighting the wider applicability of archaeological approaches. The review illustrates how study of excavated fish bones, otoliths and shells can inform our understanding of: (a) changes in biogeography, including the previous distribution of lost species; (b) long-term fluctuations in the aquatic environment, including climate change; (c) the intensity of exploitation and other anthropogenic effects; (d) trade, commodification and globalisation. These issues are also relevant to inform fisheries conservation and management targets. Equally important, the long (pre)history of European fishing raises awareness of our ecological heritage debt, owed for centuries of wealth, sustenance and well-being, and for which we share collective responsibility. This debt represents both a loss and a reason for optimism, insofar as it is a reservoir of potential to be filled by careful stewardship of our rivers, lakes, seas and oceans

    Dedifferentiation and Proliferation of Mammalian Cardiomyocytes

    Get PDF
    It has long been thought that mammalian cardiomyocytes are terminally-differentiated and unable to proliferate. However, myocytes in more primitive animals such as zebrafish are able to dedifferentiate and proliferate to regenerate amputated cardiac muscle.Here we test the hypothesis that mature mammalian cardiomyocytes retain substantial cellular plasticity, including the ability to dedifferentiate, proliferate, and acquire progenitor cell phenotypes. Two complementary methods were used: 1) cardiomyocyte purification from rat hearts, and 2) genetic fate mapping in cardiac explants from bi-transgenic mice. Cardiomyocytes isolated from rodent hearts were purified by multiple centrifugation and Percoll gradient separation steps, and the purity verified by immunostaining and RT-PCR. Within days in culture, purified cardiomyocytes lost their characteristic electrophysiological properties and striations, flattened and began to divide, as confirmed by proliferation markers and BrdU incorporation. Many dedifferentiated cardiomyocytes went on to express the stem cell antigen c-kit, and the early cardiac transcription factors GATA4 and Nkx2.5. Underlying these changes, inhibitory cell cycle molecules were suppressed in myocyte-derived cells (MDCs), while microRNAs known to orchestrate proliferation and pluripotency increased dramatically. Some, but not all, MDCs self-organized into spheres and re-differentiated into myocytes and endothelial cells in vitro. Cell fate tracking of cardiomyocytes from 4-OH-Tamoxifen-treated double-transgenic MerCreMer/ZEG mouse hearts revealed that green fluorescent protein (GFP) continues to be expressed in dedifferentiated cardiomyocytes, two-thirds of which were also c-kit(+).Contradicting the prevailing view that they are terminally-differentiated, postnatal mammalian cardiomyocytes are instead capable of substantial plasticity. Dedifferentiation of myocytes facilitates proliferation and confers a degree of stemness, including the expression of c-kit and the capacity for multipotency

    The theory of expanded, extended, and enhanced opportunities for youth physical activity promotion

    Get PDF
    Background Physical activity interventions targeting children and adolescents (≤18 years) often focus on complex intra- and inter-personal behavioral constructs, social-ecological frameworks, or some combination of both. Recently published meta-analytical reviews and large-scale randomized controlled trials have demonstrated that these intervention approaches have largely produced minimal or no improvements in young people\u27s physical activity levels. Discussion In this paper, we propose that the main reason for previous studies\u27 limited effects is that fundamental mechanisms that lead to change in youth physical activity have often been overlooked or misunderstood. Evidence from observational and experimental studies is presented to support the development of a new theory positing that the primary mechanisms of change in many youth physical activity interventions are approaches that fall into one of the following three categories: (a) the expansion of opportunities for youth to be active by the inclusion of a new occasion to be active, (b) the extension of an existing physical activity opportunity by increasing the amount of time allocated for that opportunity, and/or (c) the enhancement of existing physical activity opportunities through strategies designed to increase physical activity above routine practice. Their application and considerations for intervention design and interpretation are presented. Summary The utility of these mechanisms, referred to as the Theory of Expanded, Extended, and Enhanced Opportunities (TEO), is demonstrated in their parsimony, logical appeal, support with empirical evidence, and the direct and immediate application to numerous settings and contexts. The TEO offers a new way to understand youth physical activity behaviors and provides a common taxonomy by which interventionists can identify appropriate targets for interventions across different settings and contexts. We believe the formalization of the TEO concepts will propel them to the forefront in the design of future intervention studies and through their use, lead to a greater impact on youth activity behaviors than what has been demonstrated in previous studies

    Measurement of the mass difference m(D-s(+))-m(D+) at CDF II

    Get PDF
    We present a measurement of the mass difference m(D-s(+))-m(D+), where both the D-s(+) and D+ are reconstructed in the phipi(+) decay channel. This measurement uses 11.6 pb(-1) of data collected by CDF II using the new displaced-track trigger. The mass difference is found to be m(D-s(+))-m(D+)=99.41+/-0.38(stat)+/-0.21(syst) MeV/c(2)
    • …
    corecore