1,246 research outputs found

    Evaluation of accuracy of complete-arch multiple-unit abutment-level dental implant impressions using different impression and splinting materials.

    Get PDF
    Purpose: This in vitro study evaluated the accuracy of multiple-unit dental implant casts obtained from splinted or nonsplinted direct impression techniques using various splinting materials by comparing the casts to the reference models. The effect of two different impression materials on the accuracy of the implant casts was also evaluated for abutment-level impressions. Materials and Methods: A reference model with six internal-connection implant replicas placed in the completely edentulous mandibular arch and connected to multi-base abutments was fabricated from heat-curing acrylic resin. Forty impressions of the reference model were made, 20 each with polyether (PE) and polyvinylsiloxane (PVS) impression materials using the open tray technique. The PE and PVS groups were further subdivided into four subgroups of five each on the bases of splinting type: no splinting, bite registration PE, bite registration addition silicone, or autopolymerizing acrylic resin. The positional accuracy of the implant replica heads was measured on the poured casts using a coordinate measuring machine to assess linear differences in interimplant distances in all three axes. The collected data (linear and three-dimensional [3D] displacement values) were compared with the measurements calculated on the reference resin model and analyzed with nonparametric tests (Kruskal-Wallis and Mann-Whitney). Results: No significant differences were found between the various splinting groups for both PE and PVS impression materials in terms of linear and 3D distortions. However, small but significant differences were found between the two impression materials (PVS, 91 mu m; PE, 103 mu m) in terms of 3D discrepancies, irrespective of the splinting technique employed. Conclusions: Casts obtained from both impression materials exhibited differences from the reference model. The impression material influenced impression inaccuracy more than the splinting material for multiple-unit abutment-level impressions.Article Link : http://www.ncbi.nlm.nih.gov/pubmed/2427891

    Monopole Percolation in the Compact Abelian Higgs Model

    Full text link
    We have studied the monopole-percolation phenomenon in the four dimensional Abelian theory that contains compact U(1) gauge fields coupled to unitary norm Higgs fields. We have determined the location of the percolation transition line in the plane (βg,βH)(\beta_g, \beta_H). This line overlaps the confined-Coulomb and the confined-Higgs phase transition lines, originated by a monopole-condensation mechanism, but continues away from the end-point where this phase transition line stops. In addition, we have determined the critical exponents of the monopole percolation transition away from the phase transition lines. We have performed the finite size scaling in terms of the monopole density instead of the coupling, because the density seems to be the natural parameter when dealing with percolation phenomena.Comment: 13 pages. REVTeX. 16 figs. included using eps

    The Phases and Triviality of Scalar Quantum Electrodynamics

    Get PDF
    The phase diagram and critical behavior of scalar quantum electrodynamics are investigated using lattice gauge theory techniques. The lattice action fixes the length of the scalar (``Higgs'') field and treats the gauge field as non-compact. The phase diagram is two dimensional. No fine tuning or extrapolations are needed to study the theory's critical behovior. Two lines of second order phase transitions are discovered and the scaling laws for each are studied by finite size scaling methods on lattices ranging from 646^4 through 24424^4. One line corresponds to monopole percolation and the other to a transition between a ``Higgs'' and a ``Coulomb'' phase, labelled by divergent specific heats. The lines of transitions cross in the interior of the phase diagram and appear to be unrelated. The monopole percolation transition has critical indices which are compatible with ordinary four dimensional percolation uneffected by interactions. Finite size scaling and histogram methods reveal that the specific heats on the ``Higgs-Coulomb'' transition line are well-fit by the hypothesis that scalar quantum electrodynamics is logarithmically trivial. The logarithms are measured in both finite size scaling of the specific heat peaks as a function of volume as well as in the coupling constant dependence of the specific heats measured on fixed but large lattices. The theory is seen to be qualitatively similar to λϕ4\lambda\phi^{4}. The standard CRAY random number generator RANF proved to be inadequateComment: 25pages,26figures;revtex;ILL-(TH)-94-#12; only hardcopy of figures availabl

    Scaling laws for the 2d 8-state Potts model with Fixed Boundary Conditions

    Full text link
    We study the effects of frozen boundaries in a Monte Carlo simulation near a first order phase transition. Recent theoretical analysis of the dynamics of first order phase transitions has enabled to state the scaling laws governing the critical regime of the transition. We check these new scaling laws performing a Monte Carlo simulation of the 2d, 8-state spin Potts model. In particular, our results support a pseudo-critical beta finite-size scaling of the form beta(infinity) + a/L + b/L^2, instead of beta(infinity) + c/L^d + d/L^{2d}. Moreover, our value for the latent heat is 0.294(11), which does not coincide with the latent heat analytically derived for the same model if periodic boundary conditions are assumed, which is 0.486358...Comment: 10 pages, 3 postscript figure

    Secrecy content of two-qubit states

    Get PDF
    We analyze the set of two-qubit states from which a secret key can be extracted by single-copy measurements plus classical processing of the outcomes. We introduce a key distillation protocol and give the corresponding necessary and sufficient condition for positive key extraction. Our results imply that the critical error rate derived by Chau, Phys. Rev. A {\bf 66}, 060302 (2002), for a secure key distribution using the six-state scheme is tight. Remarkably, an optimal eavesdropping attack against this protocol does not require any coherent quantum operation.Comment: 5 pages, RevTe

    Moyamoya disease: an elusive diagnosis

    Get PDF
    Moyamoya disease is an idiopathic vasculopathy, affecting vessels of Circle of Willis.1 It usually manifests as stroke, but can also cause seizures and cognitive impairment.2 Ischemic strokes are common in children and hemorrhagic strokes in adults.1 We describe our experience with moyamoya disease in four patients who presented with ischemic strokes, at an academic tertiary care center and emphasize that this diagnosis should be considered in young patients, especially children, who present with stroke

    On the Logarithmic Triviality of Scalar Quantum Electrodynamics

    Full text link
    Using finite size scaling and histogram methods we obtain numerical results from lattice simulations indicating the logarithmic triviality of scalar quantum electrodynamics, even when the bare gauge coupling is chosen large. Simulations of the non-compact formulation of the lattice abelian Higgs model with fixed length scalar fields on L4L^{4} lattices with LL ranging from 66 through 2020 indicate a line of second order critical points. Fluctuation-induced first order transitions are ruled out. Runs of over ten million sweeps for each LL produce specific heat peaks which grow logarithmically with LL and whose critical couplings shift with LL picking out a correlation length exponent of 0.50(5)0.50(5) consistent with mean field theory. This behavior is qualitatively similar to that found in pure λϕ4\lambda\phi^{4}.Comment: 9 page

    Evaluation of efficacy and tolerability of eperisone and thiocolchicoside in treatment of low back pain associated with muscle spasm: An open label, prospective, randomized controlled trial

    Get PDF
    Background: Low back pain has a high prevalence in adult population. Because of reflex muscle spasm, muscle relaxants are frequently used either alone or in combination with analgesics. Eperisone inhibits voltage gated sodium channels in brain stem and Thiocolchicoside acts via GABA-mediated mechanism to relax muscle spasm and relieves pain.Methods: This was a prospective; open labeled, randomized, two-arm, parallel group, controlled, clinical trial. 113 patients were randomised to two groups. Patients in group A received Tablet Eperisone 100 mg whereas patients in group B received Tablet Thiocolchicoside 8 mg for seven days along with Tablet Paracetamol 500 mg. The outcome measures of trial were the improvement in finger to floor distance (FFD) and pain in lumbar region, relief of spasm and tenderness of paravertebral muscles on day 4 and 7.Results: At the end of the study FFD reduced by 18 cm in group A (p < 0.0001*) and 17.36 cm in group B (p<0.0001*) from baseline. Mean score of pain on day 7 reduced by 5.64 scale in group A as compared to 5.42 scale in group B (p<0.0001* in both groups). Paravertebral tenderness reduced by 92.6% in group A and 94.6% in group B at the end of the trial. On day 7, the spasm relief was 87% in group A and 88% in group B.Conclusions: Eperisone is an effective muscle relaxant with equivalent efficacy compared to Thiocolchicoside, and has a better tolerability in treatment of low back pain with muscle spasm
    corecore