1,360 research outputs found

    Cold atoms in non-Abelian gauge potentials: From the Hofstadter "moth" to lattice gauge theory

    Get PDF
    We demonstrate how to create artificial external non-Abelian gauge potentials acting on cold atoms in optical lattices. The method employs nn internal states of atoms and laser assisted state sensitive tunneling. Thus, dynamics are communicated by unitary n×nn\times n-matrices. By experimental control of the tunneling parameters, the system can be made truly non-Abelian. We show that single particle dynamics in the case of intense U(2) vector potentials lead to a generalized Hofstadter butterfly spectrum which shows a complex ``moth''-like structure. We discuss the possibility to employ non-Abelian interferometry (Aharonov-Bohm effect) and address methods to realize matter dynamics in specific classes of lattice gauge fields.Comment: 5 pages, 3 figure

    Scaling laws for the 2d 8-state Potts model with Fixed Boundary Conditions

    Full text link
    We study the effects of frozen boundaries in a Monte Carlo simulation near a first order phase transition. Recent theoretical analysis of the dynamics of first order phase transitions has enabled to state the scaling laws governing the critical regime of the transition. We check these new scaling laws performing a Monte Carlo simulation of the 2d, 8-state spin Potts model. In particular, our results support a pseudo-critical beta finite-size scaling of the form beta(infinity) + a/L + b/L^2, instead of beta(infinity) + c/L^d + d/L^{2d}. Moreover, our value for the latent heat is 0.294(11), which does not coincide with the latent heat analytically derived for the same model if periodic boundary conditions are assumed, which is 0.486358...Comment: 10 pages, 3 postscript figure

    On the Logarithmic Triviality of Scalar Quantum Electrodynamics

    Full text link
    Using finite size scaling and histogram methods we obtain numerical results from lattice simulations indicating the logarithmic triviality of scalar quantum electrodynamics, even when the bare gauge coupling is chosen large. Simulations of the non-compact formulation of the lattice abelian Higgs model with fixed length scalar fields on L4L^{4} lattices with LL ranging from 66 through 2020 indicate a line of second order critical points. Fluctuation-induced first order transitions are ruled out. Runs of over ten million sweeps for each LL produce specific heat peaks which grow logarithmically with LL and whose critical couplings shift with LL picking out a correlation length exponent of 0.50(5)0.50(5) consistent with mean field theory. This behavior is qualitatively similar to that found in pure λϕ4\lambda\phi^{4}.Comment: 9 page

    Chiral transition and monopole percolation in lattice scalar QED with quenched fermions

    Get PDF
    We study the interplay between topological observables and chiral and Higgs transitions in lattice scalar QED with quenched fermions. Emphasis is put on the chiral transition line and magnetic monopole percolation at strong gauge coupling. We confirm that at infinite gauge coupling the chiral transition is described by mean field exponents. We find a rich and complicated behaviour at the endpoint of the Higgs transition line which hampers a satisfactory analysis of the chiral transition. We study in detail an intermediate coupling, where the data are consistent both with a trivial chiral transition clearly separated from monopole percolation and with a chiral transition coincident with monopole percolation, and characterized by the same critical exponent ν≃0.65\nu \simeq 0.65. We discuss the relevance (or lack thereof) of these quenched results to our understanding of the \chupiv\ model. We comment on the interplay of magnetic monopoles and fermion dynamics in more general contexts.Comment: 29 pages, 13 figures included, LaTeX2e (elsart

    Thermal performance of two heat exchangers for thermoelectric generators

    Get PDF
    Thermal performance of heat exchanger is important for potential application in integrated solar cell/module and thermoelectric generator (TEG) system. Usually, thermal performance of a heat exchanger for TEGs is analysed by using a 1D heat conduction theory which ignores the detailed phenomena associated with thermo-hydraulics. In this paper, thermal and mass transports in two different exchangers are simulated by means of a steady-state, 3D turbulent flow k -e model with a heat conduction module under various flow rates. In order to simulate an actual working situation of the heat exchangers, hot block with an electric heater is included in the model. TEG model is simplified by using a 1D heat conduction theory, so its thermal performance is equivalent to a real TEG. Natural convection effect on the outside surfaces of the computational model is considered. Computational models and methods used are validated under transient thermal and electrical experimental conditions of a TEG. It is turned out that the two heat exchangers designed have a better thermal performance compared with an existing heat exchanger for TEGs, and more importantly, the fin heat exchanger is more compact and has nearly half temperature rise compared with the tube heat exchanger

    On gonihedric loops and quantum gravity

    Full text link
    We present an analysis of the gonihedric loop model, a reformulation of the two dimensional gonihedric spin model, using two different techniques. First, the usual regular lattice statistical physics problem is mapped onto a height model and studied analytically. Second, the gravitational version of this loop model is studied via matrix models techniques. Both methods lead to the conclusion that the model has cmatter=0c_{matter}=0 for all values of the parameters of the model. In this way it is possible to understand the absence of a continuous transition

    Low thrust propulsion in a coplanar circular restricted four body problem

    Get PDF
    This paper formulates a circular restricted four body problem (CRFBP), where the three primaries are set in the stable Lagrangian equilateral triangle configuration and the fourth body is massless. The analysis of this autonomous coplanar CRFBP is undertaken, which identies eight natural equilibria; four of which are close to the smaller body, two stable and two unstable, when considering the primaries to be the Sun and two smaller bodies of the solar system. Following this, the model incorporates `near term' low-thrust propulsion capabilities to generate surfaces of articial equilibrium points close to the smaller primary, both in and out of the plane containing the celestial bodies. A stability analysis of these points is carried out and a stable subset of them is identied. Throughout the analysis the Sun-Jupiter-Asteroid-Spacecraft system is used, for conceivable masses of a hypothetical asteroid set at the libration point L4. It is shown that eight bounded orbits exist, which can be maintained with a constant thrust less than 1:5 10􀀀4N for a 1000kg spacecraft. This illustrates that, by exploiting low-thrust technologies, it would be possible to maintain an observation point more than 66% closer to the asteroid than that of a stable natural equilibrium point. The analysis then focusses on a major Jupiter Trojan: the 624-Hektor asteroid. The thrust required to enable close asteroid observation is determined in the simplied CRFBP model. Finally, a numerical simulation of the real Sun-Jupiter-624 Hektor-Spacecraft is undertaken, which tests the validity of the stability analysis of the simplied model

    A Study of the N=2N=2 Kazakov-Migdal Model

    Full text link
    We study numerically the SU(2) Kazakov-Migdal model of `induced QCD'. In contrast to our earlier work on the subject we have chosen here {\it not} to integrate out the gauge fields but to keep them in the Monte Carlo simulation. This allows us to measure observables associated with the gauge fields and thereby address the problem of the local Z2Z_2 symmetry present in the model. We confirm our previous result that the model has a line of first order phase transitions terminating in a critical point. The adjoint plaquette has a clear discontinuity across the phase transition, whereas the plaquette in the fundamental representation is always zero in accordance with Elitzur's theorem. The density of small Z2Z_2 monopoles shows very little variation and is always large. We also find that the model has extra local U(1) symmetries which do not exist in the case of the standard adjoint theory. As a result, we are able to show that two of the angles parameterizing the gauge field completely decouple from the theory and the continuum limit defined around the critical point can therefore not be `QCD'.Comment: 11 pages, UTHEP-24

    Non-Gaussian fixed point in four-dimensional pure compact U(1) gauge theory on the lattice

    Full text link
    The line of phase transitions, separating the confinement and the Coulomb phases in the four-dimensional pure compact U(1) gauge theory with extended Wilson action, is reconsidered. We present new numerical evidence that a part of this line, including the original Wilson action, is of second order. By means of a high precision simulation on homogeneous lattices on a sphere we find that along this line the scaling behavior is determined by one fixed point with distinctly non-Gaussian critical exponent nu = 0.365(8). This makes the existence of a nontrivial and nonasymptotically free four-dimensional pure U(1) gauge theory in the continuum very probable. The universality and duality arguments suggest that this conclusion holds also for the monopole loop gas, for the noncompact abelian Higgs model at large negative squared bare mass, and for the corresponding effective string theory.Comment: 11 pages, LaTeX, 2 figure

    A comparative study of pulsed laser and pulsed TIG welding of Ti-5Al-2.5Sn titanium alloy sheet

    Get PDF
    Pulsed Nd:YAG laser beam welding (P-LBW) and pulsed tungsten inert gas (P-TIG) welding were used to prepare full penetration bead-on-plate weldments of 1.6 mm thick Ti-5Al-2.5Sn alpha titanium alloy sheet. The influence of welding phenomenon on the microstructure, micro-hardness, tensile properties, surface and sub-surface residual stress distribution and deformation and distortion of both the weldments were studied. Higher cooling rate in P-LBW resulted in complete α’ martensitic transformation in fusion zone whereas in P-TIG weldment α’ and acicular α was formed within equiaxed β matrix due to lower cooling rate. Hardness in fusion zone of P-LBW was higher than that of the fusion zone of P-TIG weldment due to faster cooling rate in P-LBW. The welded zone in both the weldments showed higher hardness and strength than that of the parent metal since a ductile fracture occurred in the un-welded section during tensile testing. Residual stresses in both P-LBW and P-TIG weldments showed similar trend but the distribution was much narrower in P-LBW due to less width of heat affected zone. P-LBW resulted in more nonuniformity in through thickness stress profile because of greater top to bottom width ratio. Less residual stresses, deformation and distortion and superior mechanical properties in P-LBW made the process more feasible than P-TIG for the welding of Ti-5Al-2.5Sn alloy sheet
    • …
    corecore