137 research outputs found

    Parallel pathways in the folding of a short-term denatured scFv fragment of an antibody

    Get PDF
    Background: Antibodies are prototypes of multimeric proteins and consist of structurally similar domains. The two variable domains of an antibody (VH and VL) interact through a large hydrophobic interface and can be expressed as covalently linked single-chain Fv (scFv) fragments. The in vitro folding of scFv fragments after long-term denaturation in guanidinium chloride is known to be slow. In order to delineate the nature of the rate-limiting step, the folding of the scFv fragment of an antibody after short-term denaturation has been investigated.Results: Secondary structure formation, measured by H/D-exchange protection, of a mutant scFv fragment of an antibody after short incubation in 6 M guanidinium chloride was shown to be multiphasic. NMR analysis shows that an intermediate with significant proton protection is observed within the dead time of the manual mixing experiments. Subsequently, the folding reaction proceeds via a biphasic reaction and mass spectrometry analyses of the exchange experiments confirm the existence of two parallel pathways. In the presence of cyclophilin, however, the faster of the two phases vanishes (when followed by intrinsic tryptophan fluorescence), while the slower phase is not significantly enhanced by equimolar cyclophilin.Conclusions: The formation of an early intermediate, which shows amide-proton exchange protection, is independent of proline isomerization. Subsequently, a proline cis–trans isomerization reaction in the rapidly formed intermediate, producing ‘non-native’ isomers, competes with the fast formation of native species. Interface formation in a folding intermediate of the scFv fragment is proposed to prevent the back-isomerization of these prolines from being efficiently catalyzed by cyclophilin

    Insights into the Mechanism of Ligand Binding to Octopine Dehydrogenase from Pecten maximus by NMR and Crystallography

    Get PDF
    Octopine dehydrogenase (OcDH) from the adductor muscle of the great scallop, Pecten maximus, catalyzes the NADH dependent, reductive condensation of L-arginine and pyruvate to octopine, NAD+, and water during escape swimming and/or subsequent recovery. The structure of OcDH was recently solved and a reaction mechanism was proposed which implied an ordered binding of NADH, L-arginine and finally pyruvate. Here, the order of substrate binding as well as the underlying conformational changes were investigated by NMR confirming the model derived from the crystal structures. Furthermore, the crystal structure of the OcDH/NADH/agmatine complex was determined which suggests a key role of the side chain of L-arginine in protein cataylsis. Thus, the order of substrate binding to OcDH as well as the molecular signals involved in octopine formation can now be described in molecular detail

    Mechanism of Heparin Acceleration of Tissue Inhibitor of Metalloproteases-1 (TIMP-1) Degradation by the Human Neutrophil Elastase

    Get PDF
    Heparin has been shown to regulate human neutrophil elastase (HNE) activity. We have assessed the regulatory effect of heparin on Tissue Inhibitor of Metalloproteases-1 [TIMP-1] hydrolysis by HNE employing the recombinant form of TIMP-1 and correlated FRET-peptides comprising the TIMP-1 cleavage site. Heparin accelerates 2.5-fold TIMP-1 hydrolysis by HNE. The kinetic parameters of this reaction were monitored with the aid of a FRET-peptide substrate that mimics the TIMP-1 cleavage site in pre-steady-state conditionsby using a stopped-flow fluorescence system. The hydrolysis of the FRET-peptide substrate by HNE exhibits a pre-steady-state burst phase followed by a linear, steady-state pseudo-first-order reaction. The HNE acylation step (k2 = 21±1 s−1) was much higher than the HNE deacylation step (k3 = 0.57±0.05 s−1). The presence of heparin induces a dramatic effect in the pre-steady-state behavior of HNE. Heparin induces transient lag phase kinetics in HNE cleavage of the FRET-peptide substrate. The pre-steady-state analysis revealed that heparin affects all steps of the reaction through enhancing the ES complex concentration, increasing k1 2.4-fold and reducing k−1 3.1-fold. Heparin also promotes a 7.8-fold decrease in the k2 value, whereas the k3 value in the presence of heparin was increased 58-fold. These results clearly show that heparin binding accelerates deacylation and slows down acylation. Heparin shifts the HNE pH activity profile to the right, allowing HNE to be active at alkaline pH. Molecular docking and kinetic analysis suggest that heparin induces conformational changes in HNE structure. Here, we are showing for the first time that heparin is able to accelerate the hydrolysis of TIMP-1 by HNE. The degradation of TIMP-1is associated to important physiopathological states involving excessive activation of MMPs
    corecore