10 research outputs found

    Long-term stability of Cu surface nanotips

    Get PDF
    Sharp nanoscale tips on the metal surfaces of electrodes enhance locally applied electric fields. Strongly enhanced electric fields trigger electron field emission and atom evaporation from the apexes of nanotips. Together, these processes may explain electric discharges in the form of small local arcs observed near metal surfaces in the presence of electric fields, even in ultra-high vacuum conditions. In the present work, we investigate the stability of nanoscale tips by means of computer simulations of surface diffusion processes on copper, the main material used in high-voltage electronics. We study the stability and lifetime of thin copper (Cu) surface nanotips at different temperatures in terms of diffusion processes. For this purpose we have developed a surface kinetic Monte Carlo (KMC) model where the jump processes are described by tabulated precalculated energy barriers. We show that tall surface features with high aspect ratios can be fairly stable at room temperature. However, the stability was found to depend strongly on the temperature: 13 nm nanotips with the major axes in the crystallographic directions were found to flatten down to half of the original height in less than 100 ns at temperatures close to the melting point, whereas no significant change in the height of these nanotips was observed after 10 mu s at room temperature. Moreover, the nanotips built up along the crystallographic directions were found to be significantly more stable than those oriented in the or crystallographic directions. The proposed KMC model has been found to be well-suited for simulating atomic surface processes and was validated against molecular dynamics simulation results via the comparison of the flattening times obtained by both methods. We also note that the KMC simulations were two orders of magnitude computationally faster than the corresponding molecular dynamics calculations.Peer reviewe

    Unstable decay and state selection II

    Full text link
    The decay of unstable states when several metastable states are available for occupation is investigated using path-integral techniques. Specifically, a method is described which allows the probabilities with which the metastable states are occupied to be calculated by finding optimal paths, and fluctuations about them, in the weak noise limit. The method is illustrated on a system described by two coupled Langevin equations, which are found in the study of instabilities in fluid dynamics and superconductivity. The problem involves a subtle interplay between non-linearities and noise, and a naive approximation scheme which does not take this into account is shown to be unsatisfactory. The use of optimal paths is briefly reviewed and then applied to finding the conditional probability of ending up in one of the metastable states, having begun in the unstable state. There are several aspects of the calculation which distinguish it from most others involving optimal paths: (i) the paths do not begin and end on an attractor, and moreover, the final point is to a large extent arbitrary, (ii) the interplay between the fluctuations and the leading order contribution are at the heart of the method, and (iii) the final result involves quantities which are not exponentially small in the noise strength. This final result, which gives the probability of a particular state being selected in terms of the parameters of the dynamics, is remarkably simple and agrees well with the results of numerical simulations. The method should be applicable to similar problems in a number of other areas such as state selection in lasers, activationless chemical reactions and population dynamics in fluctuating environments.Comment: 28 pages, 6 figures. Accepted for publication in Phys. Rev.

    Efficient Dynamic Importance Sampling of Rare Events in One Dimension

    Get PDF
    Exploiting stochastic path integral theory, we obtain \emph{by simulation} substantial gains in efficiency for the computation of reaction rates in one-dimensional, bistable, overdamped stochastic systems. Using a well-defined measure of efficiency, we compare implementations of ``Dynamic Importance Sampling'' (DIMS) methods to unbiased simulation. The best DIMS algorithms are shown to increase efficiency by factors of approximately 20 for a 5kBT5 k_B T barrier height and 300 for 9kBT9 k_B T, compared to unbiased simulation. The gains result from close emulation of natural (unbiased), instanton-like crossing events with artificially decreased waiting times between events that are corrected for in rate calculations. The artificial crossing events are generated using the closed-form solution to the most probable crossing event described by the Onsager-Machlup action. While the best biasing methods require the second derivative of the potential (resulting from the ``Jacobian'' term in the action, which is discussed at length), algorithms employing solely the first derivative do nearly as well. We discuss the importance of one-dimensional models to larger systems, and suggest extensions to higher-dimensional systems.Comment: version to be published in Phys. Rev.

    The Compact Linear Collider (CLIC) - 2018 Summary Report

    Get PDF

    The Compact Linear Collider (CLIC) - 2018 Summary Report

    Get PDF
    The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear e+ee^+e^- collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively. CLIC uses a two-beam acceleration scheme, in which 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept has been refined using improved software tools. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations and parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25-30 years

    Updated baseline for a staged Compact Linear Collider

    Get PDF
    The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e+e- collider under development. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in a staged approach with three centre-of-mass energy stages ranging from a few hundred GeV up to 3 TeV. The first stage will focus on precision Standard Model physics, in particular Higgs and top-quark measurements. Subsequent stages will focus on measurements of rare Higgs processes, as well as searches for new physics processes and precision measurements of new states, e.g. states previously discovered at LHC or at CLIC itself. In the 2012 CLIC Conceptual Design Report, a fully optimised 3 TeV collider was presented, while the proposed lower energy stages were not studied to the same level of detail. This report presents an updated baseline staging scenario for CLIC. The scenario is the result of a comprehensive study addressing the performance, cost and power of the CLIC accelerator complex as a function of centre-of-mass energy and it targets optimal physics output based on the current physics landscape. The optimised staging scenario foresees three main centre-of-mass energy stages at 380 GeV, 1.5 TeV and 3 TeV for a full CLIC programme spanning 22 years. For the first stage, an alternative to the CLIC drive beam scheme is presented in which the main linac power is produced using X-band klystrons
    corecore