2,832 research outputs found

    Characterizing the nonlinear internal wave climate in the northeastern South China Sea

    Get PDF
    Four oceanographic moorings were deployed in the South China Sea from April 2005 to June 2006 along a transect extending from the Batanes Province, Philippines in the Luzon Strait to just north of Dong-Sha Island on the Chinese continental slope. The purpose of the array was to observe and track large-amplitude nonlinear internal waves (NIWs) from generation to shoaling over the course of one full year. The basin and slope moorings observed velocity, temperature (<i>T</i>) and salinity (<i>S</i>) at 1–3 min intervals to observe the waves without aliasing. The Luzon mooring observed velocity at 15 min and <i>T</i> and <i>S</i> at 3 min, primarily to resolve the tidal forcing in the strait. <br><br> The observed waves travelled WNW towards 282–288 degrees with little variation. They were predominantly mode-1 waves with orbital velocities exceeding 100 cm s<sup>−1</sup> and thermal displacements exceeding 100 m. Consistent with earlier authors, two types of waves were observed: the a-waves arrived diurnally and had a rank-ordered packet structure. The b-waves arrived in between, about an hour later each day similar to the pattern of the semi-diurnal tide. The b-waves were weaker than the a-waves, usually consisted of just one large wave, and were often absent in the deep basin, appearing as NIW only upon reaching the continental slope. The propagation speed of both types of waves was 323±31 cm s<sup>−1</sup> in the deep basin and 222±18 cm s<sup>−1</sup> over the continental slope. These speeds were 11–20% faster than the theoretical mode-1 wave speeds for the observed stratification, roughly consistent with the additional contribution from the nonlinear wave amplitude. The observed waves were clustered around the time of the spring tide at the presumed generation site in the Luzon Strait, and no waves were observed at neap tide. A remarkable feature was the distinct lack of waves during the winter months, December 2005 through February 2006. <br><br> Most of the features of the wave arrivals can be explained by the tidal variability in the Luzon Strait. The near-bottom tidal currents in the Luzon Strait were characterized by a large fortnightly envelope, large diurnal inequality, and stronger ebb (towards the Pacific) than flood tides. Within about ±4 days of spring tide, when currents exceeded 71 cm s<sup>−1</sup>, the ebb tides generated high-frequency motions immediately that evolved into well-developed NIWs by the time they reached mooring B1 in the deep basin. These waves formed diurnally and correspond to the a-waves described by previous authors. Also near spring tide, the weaker flood tides formed NIWs which took longer/further to form, usually not until they reached mooring S7 on the upper continental slope. These waves tracked the semidiurnal tide and correspond to the b-waves described by previous authors. These patterns were consistent from March to November. During December–February, the structure of the barotropic tide was unchanged, so the lack of waves during this time is attributed to the deep surface mixed layer and weaker stratification along the propagation path in winter

    From the discrete to the continuous - towards a cylindrically consistent dynamics

    Full text link
    Discrete models usually represent approximations to continuum physics. Cylindrical consistency provides a framework in which discretizations mirror exactly the continuum limit. Being a standard tool for the kinematics of loop quantum gravity we propose a coarse graining procedure that aims at constructing a cylindrically consistent dynamics in the form of transition amplitudes and Hamilton's principal functions. The coarse graining procedure, which is motivated by tensor network renormalization methods, provides a systematic approximation scheme towards this end. A crucial role in this coarse graining scheme is played by embedding maps that allow the interpretation of discrete boundary data as continuum configurations. These embedding maps should be selected according to the dynamics of the system, as a choice of embedding maps will determine a truncation of the renormalization flow.Comment: 22 page

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Theory of Chiral Modulations and Fluctuations in Smectic-A Liquid Crystals Under an Electric Field

    Full text link
    Chiral liquid crystals often exhibit periodic modulations in the molecular director; in particular, thin films of the smectic-C* phase show a chiral striped texture. Here, we investigate whether similar chiral modulations can occur in the induced molecular tilt of the smectic-A phase under an applied electric field. Using both continuum elastic theory and lattice simulations, we find that the state of uniform induced tilt can become unstable when the system approaches the smectic-A--smectic-C* transition, or when a high electric field is applied. Beyond that instability point, the system develops chiral stripes in the tilt, which induce corresponding ripples in the smectic layers. The modulation persists up to an upper critical electric field and then disappears. Furthermore, even in the uniform state, the system shows chiral fluctuations, including both incipient chiral stripes and localized chiral vortices. We compare these predictions with observed chiral modulations and fluctuations in smectic-A liquid crystals.Comment: 11 pages, including 9 postscript figures, uses REVTeX 3.0 and epsf.st

    NLO QCD corrections in Herwig++ with MC@NLO

    Get PDF
    We present the calculations necessary to obtain next-to-leading order QCD precision with the Herwig++ event generator using the MC@NLO approach, and implement them for all the processes that were previously available from Fortran HERWIG with MC@NLO. We show a range of results comparing the two implementations. With these calculations and recent developments in the automatic generation of NLO matrix elements, it will be possible to obtain NLO precision with Herwig++ for a much wider range of processesComment: 26 pages, 28 figure

    Bovine aortic endothelial cells are susceptible to Hantaan virus infection

    Get PDF
    AbstractHantavirus serotype Hantaan (HTN) is one of the causative agents of hemorrhagic fever with renal syndrome (HFRS, lethality up to 10%). The natural host of HTN is Apodemus agrarius. Recent studies have shown that domestic animals like cattle are sporadically seropositive for hantaviruses. In the present study, the susceptibility of bovine aortic endothelial cells (BAEC) expressing αVÎČ3-integrin to a HTN infection was investigated. Viral nucleocapsid protein and genomic RNA segments were detected in infected BAEC by indirect immunofluorescence assay, Western blot analysis, and reverse transcription-polymerase chain reaction (RT-PCR), respectively. The results of this study strongly support our previous observation on Puumala virus (PUU) that has been propagated efficiently in BAEC. These findings open a new window to contemplate the ecology of hantavirus infection and transmission route from animal to man

    Network dynamics of ongoing social relationships

    Full text link
    Many recent large-scale studies of interaction networks have focused on networks of accumulated contacts. In this paper we explore social networks of ongoing relationships with an emphasis on dynamical aspects. We find a distribution of response times (times between consecutive contacts of different direction between two actors) that has a power-law shape over a large range. We also argue that the distribution of relationship duration (the time between the first and last contacts between actors) is exponentially decaying. Methods to reanalyze the data to compensate for the finite sampling time are proposed. We find that the degree distribution for networks of ongoing contacts fits better to a power-law than the degree distribution of the network of accumulated contacts do. We see that the clustering and assortative mixing coefficients are of the same order for networks of ongoing and accumulated contacts, and that the structural fluctuations of the former are rather large.Comment: to appear in Europhys. Let

    Subduction in the subtropical gyre : Seasoar cruises data report

    Get PDF
    The overall objective of the Subduction Accelerated Research Initiative (ARI) was to bring together several techniques to address the formation and evolution of newly formed water masses. The Seasoar component provided surveys of temperature and salinity to help determine the spatial varability of the temperature, salinity and density fields in both the active frontal regions and in the vicinity of subducting water tagged by bobbers. Data were collected in the eastern North Atlantic Ocean in spring 1991, winter 1992, winter 1993 and spring 1994. "Star" patterns were used to study the mesoscale varability. Temperature, pressure and thickness for each pattern were objectively mapped on potential density surfaces of 26.5, 26.7 and 26.9 kg/m3. Acoustic Doppler Current Profies (ADCP) maps were also created for the the two shallower density surfaces. We describe the Seasoar data collected during the four cruises. A CD-Rom includes 1- and 3-second conductivity-temperature-depth (CTD), cruise navigation, ADCP and Seasoar engineering data, as well as color figures of these data. This data report can also be viewed using an internet information browser (i.e., Mosaic, Netscape) using the provided CD-Rom.Funding was provided by the Office of Naval Research through Grants Nos, N00014-91-J-1585, N00014-90-J-1425. and N00014-90-J-1508
    • 

    corecore