10 research outputs found

    Distribution of particulate matter and tissue remodeling in the human lung.

    Get PDF
    We examined the relationship between intrapulmonary particle distribution of carbonaceous and mineral dusts and remodeling of the airways along anatomically distinct airway paths in the lungs of Hispanic males from the central valley of California. Lung autopsy specimens from the Fresno County Coroner's Office were prepared by intratracheal instillation of 2% glutaraldehyde at 30 cm H(2)O pressure. Two distinct airway paths into the apico-posterior and apico-anterior portions of the left upper lung lobe were followed. Tissue samples for histologic analysis were generally taken from the intrapulmonary second, fourth, sixth, and ninth airway generations. Parenchymal tissues beyond the 12th airway generation of each airway path were also analyzed. There was little evidence of visible particle accumulation in the larger conducting airways (generations 2-6), except in bronchial-associated lymphoid tissues and within peribronchial connective tissue. In contrast, terminal and respiratory bronchioles arising from each pathway revealed varying degrees of wall thickening and remodeling. Walls with marked thickening contained moderate to heavy amounts of carbonaceous and mineral dusts. Wall thickening was associated with increases in collagen and interstitial inflammatory cells, including dust-laden macrophages. These changes were significantly greater in first-generation respiratory bronchioles compared to second- and third-generation respiratory bronchioles. These findings suggest that accumulation of carbonaceous and mineral dust in the lungs is significantly affected by lung anatomy with the greatest retention in centers of lung acini. Furthermore, there is significant remodeling of this transitional zone in humans exposed to ambient particulate matter

    EU-OPENSCREEN:a novel collaborative approach to facilitate chemical biology

    Get PDF
    Abstract Compound screening in biological assays and subsequent optimization of hits is indispensable for the development of new molecular research tools and drug candidates. To facilitate such discoveries, the European Research Infrastructure EU-OPENSCREEN was founded recently with the support of its member countries and the European Commission. Its distributed character harnesses complementary knowledge, expertise, and instrumentation in the discipline of chemical biology from 20 European partners, and its open working model ensures that academia and industry can readily access EU-OPENSCREEN’s compound collection, equipment, and generated data. To demonstrate the power of this collaborative approach, this perspective article highlights recent projects from EU-OPENSCREEN partner institutions. These studies yielded (1) 2-aminoquinazolin-4(3H)-ones as potential lead structures for new antimalarial drugs, (2) a novel lipodepsipeptide specifically inducing apoptosis in cells deficient for the pVHL tumor suppressor, (3) small-molecule-based ROCK inhibitors that induce definitive endoderm formation and can potentially be used for regenerative medicine, (4) potential pharmacological chaperones for inborn errors of metabolism and a familiar form of acute myeloid leukemia (AML), and (5) novel tankyrase inhibitors that entered a lead-to-candidate program. Collectively, these findings highlight the benefits of small-molecule screening, the plethora of assay designs, and the close connection between screening and medicinal chemistry within EU-OPENSCREEN

    Quellen- und Literaturverzeichnis

    No full text

    Books, Articles, Chapters

    No full text
    corecore