787 research outputs found
Flexural Behavior of Reinforced Concrete Beams Strengthened with CFRP Sheets and Epoxy Mortar
Experiments were conducted to study the effect of using epoxy mortar patch end anchorages on the flexural behavior of reinforced concrete beams strengthened with carbon fiber-reinforced polymer (CFRP) sheets. More specifically, the effect of the end anchorage on strength, deflection, flexural strain, and interfacial shear stress was examined. The test results show that premature debonding failure of reinforced concrete beams strengthened with CFRP sheet can be delayed or prevented by using epoxy mortar patch end anchorages. A modified analytical procedure for evaluating the flexural capacity of reinforced concrete beams strengthened with CFRP sheets and epoxy mortar end anchorage is developed and provides a good prediction of test results
Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review
The terrestrial carbon (C) cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual), including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO<sub>2</sub> dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO<sub>2</sub> fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. A further part of the paper is dedicated to physical interactions between soil CO<sub>2</sub> and the soil matrix, such as CO<sub>2</sub> diffusion and dissolution processes within the soil profile. Finally, we highlight state-of-the-art stable isotope methodologies and their latest developments. From the presented evidence we conclude that there exists a tight coupling of physical, chemical and biological processes involved in C cycling and C isotope fluxes in the plant-soil-atmosphere system. Generally, research using information from C isotopes allows an integrated view of the different processes involved. However, complex interactions among the range of processes complicate or currently impede the interpretation of isotopic signals in CO<sub>2</sub> or organic compounds at the plant and ecosystem level. This review tries to identify present knowledge gaps in correctly interpreting carbon stable isotope signals in the plant-soil-atmosphere system and how future research approaches could contribute to closing these gaps
Overcoming cross-cultural group work tensions: mixed student perspectives on the role of social relationships
As universities worldwide rapidly internationalise, higher education classrooms have become unique spaces for collaboration between students from different countries. One common way to encourage collaboration between diverse peers is through group work. However, previous research has highlighted that cross-cultural group work can be challenging and has hinted at potential social tensions. To understand this notion better, we have used robust quantitative tools in this study to select 20 participants from a larger classroom of 860 students to take part in an in-depth qualitative interview about cross-cultural group work experiences. Participant views on social tensions in cross-cultural group work were elicited using a unique mediating artefact method to encourage reflection and in-depth discussion. In our analysis of emergent interview themes, we compared student perspectives on the role of social relationships in group work by their academic performance level. Our findings indicated that all students interviewed desired the opportunity to form social relationships with their group work members, but their motivations for doing so varied widely by academic performance level
Stability and Electronic Properties of TiO2 Nanostructures With and Without B and N Doping
We address one of the main challenges to TiO2-photocatalysis, namely band gap
narrowing, by combining nanostructural changes with doping. With this aim we
compare TiO2's electronic properties for small 0D clusters, 1D nanorods and
nanotubes, 2D layers, and 3D surface and bulk phases using different
approximations within density functional theory and GW calculations. In
particular, we propose very small (R < 0.5 nm) but surprisingly stable
nanotubes with promising properties. The nanotubes are initially formed from
TiO2 layers with the PtO2 structure, with the smallest (2,2) nanotube relaxing
to a rutile nanorod structure. We find that quantum confinement effects - as
expected - generally lead to a widening of the energy gap. However,
substitutional doping with boron or nitrogen is found to give rise to
(meta-)stable structures and the introduction of dopant and mid-gap states
which effectively reduce the band gap. Boron is seen to always give rise to
n-type doping while depending on the local bonding geometry, nitrogen may give
rise to n-type or p-type doping. For under coordinated TiO2 surface structures
found in clusters, nanorods, nanotubes, layers and surfaces nitrogen gives rise
to acceptor states while for larger clusters and bulk structures donor states
are introduced
Fuchsian convex bodies: basics of Brunn--Minkowski theory
The hyperbolic space \H^d can be defined as a pseudo-sphere in the
Minkowski space-time. In this paper, a Fuchsian group is a group of
linear isometries of the Minkowski space such that \H^d/\Gamma is a compact
manifold. We introduce Fuchsian convex bodies, which are closed convex sets in
Minkowski space, globally invariant for the action of a Fuchsian group. A
volume can be associated to each Fuchsian convex body, and, if the group is
fixed, Minkowski addition behaves well. Then Fuchsian convex bodies can be
studied in the same manner as convex bodies of Euclidean space in the classical
Brunn--Minkowski theory. For example, support functions can be defined, as
functions on a compact hyperbolic manifold instead of the sphere.
The main result is the convexity of the associated volume (it is log concave
in the classical setting). This implies analogs of Alexandrov--Fenchel and
Brunn--Minkowski inequalities. Here the inequalities are reversed
Towards unified understanding of conductance of stretched monatomic contacts
When monatomic contacts are stretched, their conductance behaves in
qualitatively different ways depending on their constituent atomic elements.
Under a single assumption of resonance formation, we show that various
conductance behavior can be understood in a unified way in terms of the
response of the resonance to stretching. This analysis clarifies the crucial
roles played by the number of valence electrons, charge neutrality, and orbital
shapes.Comment: 2 figure
Serum heart-type fatty acid-binding protein and cerebrospinal fluid tau: Marker candidates for dementia with Lewy bodies
Background: The measurement of biomarkers in cerebrospinal fluid (CSF) has gained increasing acceptance in establishing the diagnosis of some neurodegenerative diseases. Heart-type fatty acid-binding protein (H-FABP) was recently discovered in CSF and serum of patients with neurodegenerative diseases. Objective: We investigated H-FABP in CSF and serum alone and in combination with CSF tau protein to evaluate these as potential biomarkers for the differentiation between dementia with Lewy bodies (DLB) and Alzheimer's disease (AD). Methods: We established H-FABP and tau protein values in a set of 144 persons with DLB (n = 33), Parkinson disease with dementia (PDD; n = 25), AD (n = 35) and nonclemented neurological controls (NNC; n = 51). Additionally, serum H-FABP levels were analyzed in idiopathic Parkinson disease patients without evidence of cognitive decline (n = 45) using commercially available enzyme-linked immunosorbent assays. We calculated absolute values of HFABP and tau protein in CSF and serum and established relative ratios between the two to obtain the best possible match for the clinical working diagnosis. Results: Serum HFABP levels were elevated in DLB and PDD patients compared with NNC and AD subjects. To better discriminate between DLB and AD, we calculated the ratio of serum H-FABP to CSF tau protein levels. At the arbitrary chosen cutoff ratio >= 8 this quotient reached a sensitivity of 91% and a specificity of 66%. Conclusion: Our results suggest that the measurement of CSF tau protein, together with H-FABP quantification in serum and CSF, and the ratio of serum H-FABP to CSF tau protein represent marker candidates for the differentiation between AD and DLB. Copyright (c) 2007 S. Karger AG, Basel
Common Origin for Surface Reconstruction and the Formation of Chains of Metal Atoms
During the fracture of nanocontacts gold spontaneously forms freely suspended
chains of atoms, which is not observed for the iso-electronic noble metals Ag
and Cu. Au also differs from Ag and Cu in forming reconstructions at its
low-index surfaces. Using mechanically controllable break junctions we show
that all the 5d metals that show similar reconstructions (Ir, Pt and Au) also
form chains of atoms, while both properties are absent in the 4d neighbor
elements (Rh, Pd, Ag), indicating a common origin for these two phenomena. A
competition between s and d bonding is proposed as an explanation
Magnetic phenomena in 5d transition metal nanowires
We have carried out fully relativistic full-potential, spin-polarized,
all-electron density-functional calculations for straight, monatomic nanowires
of the 5d transition and noble metals Os, Ir, Pt and Au. We find that, of these
metal nanowires, Os and Pt have mean-field magnetic moments for values of the
bond length at equilibrium. In the case of Au and Ir, the wires need to be
slightly stretched in order to spin polarize. An analysis of the band
structures of the wires indicate that the superparamagnetic state that our
calculations suggest will affect the conductance through the wires -- though
not by a large amount -- at least in the absence of magnetic domain walls. It
should thus lead to a characteristic temperature- and field dependent
conductance, and may also cause a significant spin polarization of the
transmitted current.Comment: 7 pages, 5 figure
Recommended from our members
Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: A review
The terrestrial carbon (C) cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual), including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO2 dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO2 fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. A further part of the paper is dedicated to physical interactions between soil CO2 and the soil matrix, such as CO2 diffusion and dissolution processes within the soil profile. Finally, we highlight state-of-the-art stable isotope methodologies and their latest developments. From the presented evidence we conclude that there exists a tight coupling of physical, chemical and biological processes involved in C cycling and C isotope fluxes in the plant-soil-atmosphere system. Generally, research using information from C isotopes allows an integrated view of the different processes involved. However, complex interactions among the range of processes complicate or currently impede the interpretation of isotopic signals in CO2 or organic compounds at the plant and ecosystem level. This review tries to identify present knowledge gaps in correctly interpreting carbon stable isotope signals in the plant-soil-atmosphere system and how future research approaches could contribute to closing these gaps
- …