796 research outputs found

    Mathematical Model of Easter Island Society Collapse

    Full text link
    In this paper we consider a mathematical model for the evolution and collapse of the Easter Island society, starting from the fifth century until the last period of the society collapse (fifteen century). Based on historical reports, the available primary sources consisted almost exclusively on the trees. We describe the inhabitants and the resources as an isolated system and both considered as dynamic variables. A mathematical analysis about why the structure of the Easter Island community collapse is performed. In particular, we analyze the critical values of the fundamental parameters driving the interaction humans-environment and consequently leading to the collapse. The technological parameter, quantifying the exploitation of the resources, is calculated and applied to the case of other extinguished civilization (Cop\'an Maya) confirming, with a sufficiently precise estimation, the consistency of the adopted model.Comment: 9 pages, 1 figure, final version published on EuroPhysics Letter

    The structure of deuterated benzene films adsorbed on the graphite (0001) basal plane: what happens below and above the monolayer coverage?

    Get PDF
    An exact description of the interactions in aromatic carbon systems is a key condition for the design of carbon based nanomaterials. In this paper we investigate the binding and adsorbate structure of the simplest prototype system in this class – the single aromatic ring molecule benzene on graphite. We have collected neutron diffraction data of the ordered phase of deuterated benzene, C6D6, adsorbed on the graphite (0001) basal plane surface. We examined relative coverages from 0.15 up to 1.3 monolayers (ML) in a temperature range of 80 to 250 K. The results confirm the flat lying commensurate (√7 x √7) R19.1° monolayer with lattice constants a = b = 6.5 Å at coverages of less than 1 ML. For this structure we observe a progressive melting well below the desorption temperature. At higher coverages we do neither observe an ordered second layer nor a densification of the structure by upright tilting of first layer molecules, as generally assumed up to now. Instead, we see the formation of clusters with a bulk crystalline structure for coverages only weakly exceeding 1 ML

    Acute Disseminated Encephalomyelitis with Seizures and Myocarditis: A Fatal Triad.

    Get PDF
    Autoimmune pathology of acute disseminated encephalomyelitis (ADEM) is generally restricted to the brain. Our objective is to expand the phenotype of ADEM. A four-year-old girl was admitted to the pediatric emergency room of a university medical center five days after a common upper respiratory tract infection. Acute symptoms were fever, leg pain, and headaches. She developed meningeal signs, and her level of consciousness dropped rapidly. Epileptic seizure activity started, and she became comatose, requiring intubation and mechanical ventilation. Serial brain magnetic resonance imaging (MRI) illustrated the fulminant development of ADEM. Treatment escalation with high-dose corticosteroids, immunoglobulins, and plasma exchange did not lead to clinical improvement. On day ten, the patient developed treatment-refractory cardiogenic shock and passed away. The postmortem assessment confirmed ADEM and revealed acute lymphocytic myocarditis, likely explaining the acute cardiac failure. Human metapneumovirus and picornavirus were detected in the tracheal secrete by PCR. Data sources-medical chart of the patient. This case is consistent with evidence from experimental findings of an association of ADEM with myocarditis as a postinfectious systemic autoimmune response, with life-threatening involvement of the brain and heart

    Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review

    Get PDF
    The terrestrial carbon (C) cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual), including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO<sub>2</sub> dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO<sub>2</sub> fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. A further part of the paper is dedicated to physical interactions between soil CO<sub>2</sub> and the soil matrix, such as CO<sub>2</sub> diffusion and dissolution processes within the soil profile. Finally, we highlight state-of-the-art stable isotope methodologies and their latest developments. From the presented evidence we conclude that there exists a tight coupling of physical, chemical and biological processes involved in C cycling and C isotope fluxes in the plant-soil-atmosphere system. Generally, research using information from C isotopes allows an integrated view of the different processes involved. However, complex interactions among the range of processes complicate or currently impede the interpretation of isotopic signals in CO<sub>2</sub> or organic compounds at the plant and ecosystem level. This review tries to identify present knowledge gaps in correctly interpreting carbon stable isotope signals in the plant-soil-atmosphere system and how future research approaches could contribute to closing these gaps

    Pretreatment levels of the fatty acid handling proteins H-FABP and CD36 predict response to olanzapine in recent-onset schizophrenia patients.

    Get PDF
    Traditional schizophrenia pharmacotherapy remains a subjective trial and error process involving administration, titration and switching of drugs multiple times until an adequate response is achieved. Despite this time-consuming and costly process, not all patients show an adequate response to treatment. As a consequence, relapse is a common occurrence and early intervention is hampered. Here, we have attempted to identify candidate blood biomarkers associated with drug response in 121 initially antipsychotic-free recent-onset schizophrenia patients treated with widely-used antipsychotics, namely olanzapine (n=40), quetiapine (n=23), risperidone (n=30) and a mixture of these drugs (n=28). Patients were recruited and investigated as two separate cohorts to allow biomarker validation. Data analysis showed the most significant relationship between pre-treatment levels of heart-type fatty acid binding protein (H-FABP) and response to olanzapine (p=0.008, F=8.6, β=70.4 in the discovery cohort and p=0.003, F=15.2, β=24.4 in the validation cohort, adjusted for relevant confounding variables). In a functional follow-up analysis of this finding, we tested an independent cohort of 10 patients treated with olanzapine and found that baseline levels of plasma H-FABP and expression of the binding partner for H-FABP, fatty acid translocase (CD36), on monocytes predicted the reduction of psychotic symptoms (p=0.040, F=6.0, β=116.3 and p=0.012, F=11.9, β=-0.0054, respectively). We also identified a set of serum molecules changed after treatment with antipsychotic medication, in particular olanzapine. These molecules are predominantly involved in cellular development and metabolism. Taken together, our findings suggest an association between biomarkers involved in fatty acid metabolism and response to olanzapine, while other proteins may serve as surrogate markers associated with drug efficacy and side effects.This work was supported by the Stanley Medical Research Institute (SMRI); the European Union FP7 SchizDX research programme (grant reference 223427); the European Union FP7 funding scheme: Marie Curie Actions Industry Academia Partnerships and Pathways (nr. 286334, PSYCH-AID project); by the Virgo consortium, funded by the Dutch Government (project number FES0908); by the Netherlands Genomics Initiative (project number 050-060-452); by the Dutch Fund for Economic Structure Reinforcement, the NeuroBasic PharmaPhenomics project (no. 0908) and by the Engineering and Physical Sciences Research Council UK (EPSRC CASE studentship and Impact Acceleration Award).This is the final version of the article. It was first available from Elsevier via http://dx.doi.org/10.1016/j.bbi.2015.10.01

    Sound archaeology: terminology, Palaeolithic cave art and the soundscape

    Get PDF
    This article is focused on the ways that terminology describing the study of music and sound within archaeology has changed over time, and how this reflects developing methodologies, exploring the expectations and issues raised by the use of differing kinds of language to define and describe such work. It begins with a discussion of music archaeology, addressing the problems of using the term ‘music’ in an archaeological context. It continues with an examination of archaeoacoustics and acoustics, and an emphasis on sound rather than music. This leads on to a study of sound archaeology and soundscapes, pointing out that it is important to consider the complete acoustic ecology of an archaeological site, in order to identify its affordances, those possibilities offered by invariant acoustic properties. Using a case study from northern Spain, the paper suggests that all of these methodological approaches have merit, and that a project benefits from their integration

    Stability and Electronic Properties of TiO2 Nanostructures With and Without B and N Doping

    Full text link
    We address one of the main challenges to TiO2-photocatalysis, namely band gap narrowing, by combining nanostructural changes with doping. With this aim we compare TiO2's electronic properties for small 0D clusters, 1D nanorods and nanotubes, 2D layers, and 3D surface and bulk phases using different approximations within density functional theory and GW calculations. In particular, we propose very small (R < 0.5 nm) but surprisingly stable nanotubes with promising properties. The nanotubes are initially formed from TiO2 layers with the PtO2 structure, with the smallest (2,2) nanotube relaxing to a rutile nanorod structure. We find that quantum confinement effects - as expected - generally lead to a widening of the energy gap. However, substitutional doping with boron or nitrogen is found to give rise to (meta-)stable structures and the introduction of dopant and mid-gap states which effectively reduce the band gap. Boron is seen to always give rise to n-type doping while depending on the local bonding geometry, nitrogen may give rise to n-type or p-type doping. For under coordinated TiO2 surface structures found in clusters, nanorods, nanotubes, layers and surfaces nitrogen gives rise to acceptor states while for larger clusters and bulk structures donor states are introduced

    The Force Needed to Move an Atom on a Surface

    Full text link

    The Two-Component Sensor Kinase TcsC and Its Role in Stress Resistance of the Human-Pathogenic Mold Aspergillus fumigatus

    Get PDF
    Two-component signaling systems are widespread in bacteria, but also found in fungi. In this study, we have characterized TcsC, the only Group III two-component sensor kinase of Aspergillus fumigatus. TcsC is required for growth under hyperosmotic stress, but dispensable for normal growth, sporulation and conidial viability. A characteristic feature of the ΔtcsC mutant is its resistance to certain fungicides, like fludioxonil. Both hyperosmotic stress and treatment with fludioxonil result in a TcsC-dependent phosphorylation of SakA, the final MAP kinase in the high osmolarity glycerol (HOG) pathway, confirming a role for TcsC in this signaling pathway. In wild type cells fludioxonil induces a TcsC-dependent swelling and a complete, but reversible block of growth and cytokinesis. Several types of stress, such as hypoxia, exposure to farnesol or elevated concentrations of certain divalent cations, trigger a differentiation in A. fumigatus toward a “fluffy” growth phenotype resulting in white, dome-shaped colonies. The ΔtcsC mutant is clearly more susceptible to these morphogenetic changes suggesting that TcsC normally antagonizes this process. Although TcsC plays a role in the adaptation of A. fumigatus to hypoxia, it seems to be dispensable for virulence

    Brain iron accumulation in Wilson disease: a post-mortem 7 Tesla MRI - histopathological study

    Get PDF
    Aims: In Wilson disease (WD), T2/T2*-weighted (T2*w) MRI frequently shows hypointensity in the basal ganglia that is suggestive of paramagnetic deposits. It is currently unknown whether this hypointensity is related to copper or iron deposition. We examined the neuropathological correlate of this MRI pattern, particularly in relation to iron and copper concentrations. Methods: Brain slices from nine WD and six control cases were investigated using a 7T-MRI system. High resolution T2*w images were acquired and R2* parametric maps were reconstructed using a multi-gradient recalled echo sequence. R2* was measured in the globus pallidus (GP) and the putamen. Corresponding histopathological sections containing the lentiform nucleus were examined using Turnbull iron staining, and double staining combining Turnbull with immunohistochemistry for macrophages or astrocytes. Quantitative densitometry of the iron staining as well as copper and iron concentrations were measured in the GP and putamen and correlated to R2* values. Results: T2*w hypointensity in the GP and/or putamen was apparent in WD cases and R2* values correlated with quantitative densitometry of iron staining. In WD, iron and copper concentrations were increased in the putamen compared to controls. R2* was correlated with the iron concentration in the GP and putamen whereas no correlation was observed for the copper concentration. Patients with more pronounced pathological severity in the putamen displayed increased iron concentration, which correlated with an elevated number of iron-containing macrophages. Conclusions: T2/T2*w hypointensity observed in vivo in the basal ganglia of WD patients is related to iron rather than copper deposits
    corecore