70 research outputs found

    Herbivore diversity improves benthic community resilience to ocean acidification

    Get PDF
    Ocean acidification is expected to alter a wide range of marine systems, but there is great uncertainty about the outcome because indirect effects are often crucial in ecology. Work at volcanic seeps has shown that major ecological shifts occur due to chronic exposure to acidified seawater. Changes in herbivore densities are often seen and this may interact with direct CO2 effects to determine benthic community structure. Here, an exclusion experiment was used to test effects of herbivory in benthic communities along a pCO2 gradient off Methana (Greece). A manipulative experiment was used to examine how large herbivores affected sublittoral algal communities as seawater carbon dioxide levels increased. Sea urchins and herbivorous fish dramatically reduced macroalgal biomass at background carbon dioxide levels; this effect was not hampered by increased pCO2 despite lower sea urchin densities near the seeps, since herbivorous fish abundances increased concurrently. We found that carbon dioxide levels up to about 2000μatm are unlikely to reduce the role of herbivory in structuring benthic communities if tolerant species are able to replace those that are vulnerable. A shift from sea urchins to fish as main grazers highlights that ocean acidification may cause unexpected responses at the community level, and that maintaining high functional redundancy in marine ecosystems is key to improving their resilience

    Marine bivalve geochemistry and shell ultrastructure from modern low pH environments

    Get PDF
    Abstract. Bivalve shells can provide excellent archives of past environmental change but have not been used to interpret ocean acidification events. We investigated carbon, oxygen and trace element records from different shell layers in the mussels Mytilus galloprovincialis (from the Mediterranean) and M. edulis (from the Wadden Sea) combined with detailed investigations of the shell ultrastructure. Mussels from the harbour of Ischia (Mediterranean, Italy) were transplanted and grown in water with mean pHT 7.3 and mean pHT 8.1 near CO2 vents on the east coast of the island of Ischia. The shells of transplanted mussels were compared with M. edulis collected at pH ~8.2 from Sylt (German Wadden Sea). Most prominently, the shells recorded the shock of transplantation, both in their shell ultrastructure, textural and geochemical record. Shell calcite, precipitated subsequently under acidified seawater responded to the pH gradient by an in part disturbed ultrastructure. Geochemical data from all test sites show a strong metabolic effect that exceeds the influence of the low-pH environment. These field experiments showed that care is needed when interpreting potential ocean acidification signals because various parameters affect shell chemistry and ultrastructure. Besides metabolic processes, seawater pH, factors such as salinity, water temperature, food availability and population density all affect the biogenic carbonate shell archive.</jats:p

    Seasonality affects macroalgal community response to increases in pCO2.

    Get PDF
    Ocean acidification is expected to alter marine systems, but there is uncertainty about its effects due to the logistical difficulties of testing its large-scale and long-term effects. Responses of biological communities to increases in carbon dioxide can be assessed at CO2 seeps that cause chronic exposure to lower seawater pH over localised areas of seabed. Shifts in macroalgal communities have been described at temperate and tropical pCO2 seeps, but temporal and spatial replication of these observations is needed to strengthen confidence our predictions, especially because very few studies have been replicated between seasons. Here we describe the seawater chemistry and seasonal variability of macroalgal communities at CO2 seeps off Methana (Aegean Sea). Monitoring from 2011 to 2013 showed that seawater pH decreased to levels predicted for the end of this century at the seep site with no confounding gradients in Total Alkalinity, salinity, temperature or wave exposure. Most nutrient levels were similar along the pH gradient; silicate increased significantly with decreasing pH, but it was not limiting for algal growth at all sites. Metal concentrations in seaweed tissues varied between sites but did not consistently increase with pCO2. Our data on the flora are consistent with results from laboratory experiments and observations at Mediterranean CO2 seep sites in that benthic communities decreased in calcifying algal cover and increased in brown algal cover with increasing pCO2. This differs from the typical macroalgal community response to stress, which is a decrease in perennial brown algae and proliferation of opportunistic green algae. Cystoseira corniculata was more abundant in autumn and Sargassum vulgare in spring, whereas the articulated coralline alga Jania rubens was more abundant at reference sites in autumn. Diversity decreased with increasing CO2 regardless of season. Our results show that benthic community responses to ocean acidification are strongly affected by season

    Home advantage? Decomposition across the freshwater-estuarine transition zone varies with litter origin and local salinity

    Get PDF
    Expected increases in the frequency and intensity of storm surges and river flooding may greatly affect the relative salinity of estuarine environments over the coming decades. In this experiment we used detritus from three contrasting environments (marine Fucus vesiculosus; estuarine Spartina anglica; terrestrial Quercus robur) to test the prediction that the decomposition of the different types of litter would be highest in the environment with which they are associated. Patterns of decomposition broadly fitted our prediction: Quercus detritus decomposed more rapidly in freshwater compared with saline conditions while Fucus showed the opposite trend; Spartina showed an intermediate response. Variation in macro-invertebrate assemblages was detected along the salinity gradient but with different patterns between estuaries, suggesting that breakdown rates may be linked in part to local invertebrate assemblages. Nonetheless, our results suggest that perturbation of salinity gradients through climate change could affect the process of litter decomposition and thus alter nutrient cycling in estuarine transition zones. Understanding the vulnerability of estuaries to changes in local abiotic conditions is important given the need to better integrate coastal proceses into a wider management framework at a time when coastlines are increasingly threatened by human activities

    Marine bivalve shell geochemistry and ultrastructure from modern low pH environments: environmental effect versus experimental bias

    Get PDF
    Bivalve shells can provide excellent archives of past environmentalchange but have not been used to interpret ocean acidification events.We investigated carbon, oxygen and trace element records from differentshell layers in the mussels Mytilus galloprovincialis combined withdetailed investigations of the shell ultrastructure. Mussels from theharbour of Ischia (Mediterranean, Italy) were transplanted and grown inwater with mean pHT 7.3 and mean pHT 8.1 near CO2 vents on the eastcoast of the island. Most prominently, the shells recorded the shock oftransplantation, both in their shell ultrastructure, textural andgeochemical record. Shell calcite, precipitated subsequently underacidified seawater responded to the pH gradient by an in part disturbedultrastructure. Geochemical data from all test sites show a strongmetabolic effect that exceeds the influence of the low-pH environment.These field experiments showed that care is needed when interpretingpotential ocean acidification signals because various parameters affectshell chemistry and ultrastructure. Besides metabolic processes,seawater pH, factors such as salinity, water temperature, foodavailability and population density all affect the biogenic carbonateshell archive

    What’s so bad about scientism?

    Get PDF
    In their attempt to defend philosophy from accusations of uselessness made by prominent scientists, such as Stephen Hawking, some philosophers respond with the charge of ‘scientism.’ This charge makes endorsing a scientistic stance, a mistake by definition. For this reason, it begs the question against these critics of philosophy, or anyone who is inclined to endorse a scientistic stance, and turns the scientism debate into a verbal dispute. In this paper, I propose a different definition of scientism, and thus a new way of looking at the scientism debate. Those philosophers who seek to defend philosophy against accusations of uselessness would do philosophy a much better service, I submit, if they were to engage with the definition of scientism put forth in this paper, rather than simply make it analytic that scientism is a mistake

    Relationship between mineralogy and minor element partitioning in limpets from an Ischia CO 2 vent site provides new insights into their biomineralization pathway

    Get PDF
    It has long since been noted that minor element (Me) partitioning into biogenic carbonates is sometimes different from Me partitioning into inorganically precipitated carbonates. The prime example is the partitioning coefficient, which might be lower or even higher than the one of inorganically precipitated carbonate. Such a difference is usually termed “vital effect” and is seen as indicative of a biologically modified minor element partitioning. Over the last three decades interest in conceptual biomineralization models compatible with minor element and isotope fractionation has been steadily increasing. However, inferring features of a biomineralization mechanism from Me partitioning is complicated, because not all partitioning coefficients show vital effects in every calcium carbonate producing organism. Moreover, the partitioning coefficient is not the only aspect of Me partitioning. Other aspects include polymorph specificity and rate dependence. Patellogastropod limpets are ideally suited for analysing Me partitioning in terms of biomineralization models, because they feature both aragonitic and calcitic shell parts, so that polymorph specificity can be tested. In this study, polymorph-specific partitioning of the minor elements Mg, Li, B, Sr, and U into shells of the patellogastropod limpet Patella caerulea from within and outside a CO2 vent site at Ischia (Italy) was investigated by means of LA-ICP-MS. The partitioning coefficients of U, B, Mg, and Sr (in aragonite) differed from the respective inorganic ones, while the partitioning coefficients of Li and Sr (in calcite) fell within the range of published values for inorganically precipitated carbonates. Polymorph specificity of Me partitioning was explicable in terms of inorganic precipitation in the case of Sr and Mg, but not Li and B. Seawater carbon chemistry did not have the effect on B partitioning that was expected on the basis of data on inorganic precipitates and foraminifera. Carbon chemistry did affect Mg (in aragonite) and Li, but only the effect on Mg was explicable in terms of calcification rate. On the one hand, these results show that Me partitioning in P. caerulea is incompatible with a direct precipitation of shell calcium carbonate from the extrapallial fluid. On the other hand, our results are compatible with precipitation from a microenvironment formed by the mantle. Such a microenvironment was proposed based on data other than Me partitioning. This is the first study which systematically employs a multi-element, multi-aspect approach to test the compatibility of Me partitioning with different conceptual biomineralization models

    Inorganic carbon physiology underpins macroalgal responses to elevated CO2

    Get PDF
    Beneficial effects of CO2 on photosynthetic organisms will be a key driver of ecosystem change under ocean acidification. Predicting the responses of macroalgal species to ocean acidification is complex, but we demonstrate that the response of assemblages to elevated CO2 are correlated with inorganic carbon physiology. We assessed abundance patterns and a proxy for CO2:HCO3- use (\u3b413C values) of macroalgae along a gradient of CO2 at a volcanic seep, and examined how shifts in species abundance at other Mediterranean seeps are related to macroalgal inorganic carbon physiology. Five macroalgal species capable of using both HCO3- and CO2 had greater CO2 use as concentrations increased. These species (and one unable to use HCO3-) increased in abundance with elevated CO2 whereas obligate calcifying species, and non-calcareous macroalgae whose CO2 use did not increase consistently with concentration, declined in abundance. Physiological groupings provide a mechanistic understanding that will aid us in determining which species will benefit from ocean acidification and why
    corecore