767 research outputs found

    Advantages and disadvantages of different nasal CPAP systems in newborns

    Get PDF
    Objective: To compare three different systems of continuous positive airway pressure (CPAP): the naso-pharyngeal tube and two-prong systems in newborns, focusing on duration of CPAP, side effects and cost. Design: Randomized clinical study. Patients: Between July 2000 and September 2001 newborns were randomized to three different CPAP systems. Forty infants in two weight groups (>2500g and 1250-2500g; 20 patients in each group) were included. Results: In the group >2500g the median duration of CPAP was 1.1days (range 0.25-14.3days). The median time on a naso-pharyngeal CPAP was 1day (range 0.25-14.3days), on Hudson prongs 1.6days (range 0.5-3.3days) and on the Infant Flow system 0.7days (range 0.3-13.6days; p>0.05 for comparison between groups, Fisher's exact test). With naso-pharyngeal CPAP, 2 patients developed moderate nasal injuries. On Hudson, 2 patients developed moderate and three mild nasal injuries. One patient on the Infant Flow showed mild and one moderate nasal injuries. In the weight group 1250-2500g the median duration of CPAP was 1.1days (range 0.1-7.0days). The median time on the naso-pharyngeal tube was 0.9days (range 0.1-7days), on Hudson prongs 1.1days (range 0.7-6.6days) and on the Infant Flow system 1.3days (range 0.25-5.9days; p>0.05 for comparison between groups, Fisher's exact test). With a naso-pharygeal tube, one infant developed mild and one moderate nasal injuries. On Hudson prongs, two had moderate nasal injuries. On Infant Flow, one newborn showed a severe nasal injury and two mild injuries. None of the patients developed a pneumothorax. Conclusion: The naso-pharyngeal tube is an easy, safe and economical CPAP system usable with every common ventilator. For very low birth weight newborns, a prong system may have advantage

    GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: lessons from Barley – A review

    Get PDF
    Understanding the genetic complexity of traits is an important objective of small grain temperate cereals yield and adaptation improvements. Bi-parental quantitative trait loci (QTL) linkage mapping is a pow- erful method to identify genetic regions that co-segregate in the trait of interest within the research pop- ulation. However, recently, association or linkage disequilibrium (LD) mapping using a genome-wide association study (GWAS) became an approach for unraveling the molecular genetic basis underlying the natural phenotypic variation. Many causative allele(s)/loci have been identified using the power of this approach which had not been detected in QTL mapping populations. In barley (Hordeum vulgare L.), GWAS has been successfully applied to define the causative allele(s)/loci which can be used in the breeding crop for adaptation and yield improvement. This promising approach represents a tremendous step forward in genetic analysis and undoubtedly proved it is a valuable tool in the identification of can- didate genes. In this review, we describe the recently used approach for genetic analyses (linkage map- ping or association mapping), and then provide the basic genetic and statistical concepts of GWAS, and subsequently highlight the genetic discoveries using GWAS. The review explained how the candidate gene(s) can be detected using state-of-art bioinformatic tools

    SIMULATION AND RESPONSE SURFACE METHODOLOGY TO OPTIMIZE WINTER WHEAT RESPONSE TO GLOBAL CLIMATE CHANGE

    Get PDF
    Future climate changes can have a major impact on crop production. But, whatever the climatic changes, crop production can be adapted to climate change by implementing alternative management practices and developing new genotypes that will take full advantage of the future climatic conditions. Since the classical agronomic research approach is not possible in identifying these new agronomic technologies for the future climatic conditions, we used response surface methodology (RSM) in connection with the CERES-Wheat crop model and the HADCM2 climate simulation model to identify optimal configuration of plant traits and management practices that maximize yield of winter wheat under high CO2 environments. The simulations were conducted for three Nebraska locations (Havelock, Dickens and Alliance), which were considered representative of winter wheat growing areas in the central Great Plains. At all locations, the identified optimal winter wheat cultivar under high CO2 conditions had a larger number of tillers, larger kernel size, shorter days to flower, grew faster and had more kernels per square meter than the check variety under normal CO2 conditions, while the optimal planting dates were later and planting densities were lower than under normal conditions. We concluded that RSM used in conjunction with crop and climate simulation models was a useful approach to understanding the complex relationship between wheat genotypes, climate and management practices

    ARE SPATIAL MODELS NEEDED WITH ADEQUATELY BLOCKED FIELD TRIALS?

    Get PDF
    The use of nearest neighbors and spatial models (SPAT) to analyze field trial data has become commonplace in recent years. These two types of analyses improve precision compared to ANOVA when trials are poorly blocked, but results are less clear in well-blocked trials. We examined data from wheat trials containing 60 cultivars, conducted at five locations, where each location was set up as an alpha lattice design. We compared the relative efficiency of detecting cultivar differences for spatial models and nearest neighbors analyses (NNA) to ANOVA, fit of the models, and correlations of ranked cultivars. Though the SPAT and NNA generally outperformed the ANOVA, the selection of desirable cultivars remained relatively unchanged when using a well-blocked design analyzed with an ANOVA

    Coleoptile length comparison of three winter small grain cereals adapted to the Great Plains

    Get PDF
    Successful crop stand establishment is critical to realize high yield potential, which is dependent on depth of seed placement to access soil moisture. The coleoptile determines sowing depth by its length and ability to emerge from depth. This study was conducted to assess coleoptile length among three sets of three Great Plains winter small grain cereals—wheat (Triticum aestivum L.), barley (Hordeum vulgare L.) and triticale (X triticosecale Wittm.)—and to evaluate the effect of the Rht-B1b dwarfing allele on coleoptile length in wheat and triticale. Fifty seeds of each genotype were sown in wet germination paper in two replications utilizing a randomized complete block design, which were placed in dark growth chambers at 25°C. Measurements were conducted after 7 d, and analysis of variance and comparison of least square means for coleoptile length among and within each set of genotypes were performed in Statistix 8.1 software using Fisher’s protected least significance difference at the α = 0.05 significance level. Results revealed that triticale had the longest coleoptiles, which were significantly longer (P \u3c 0.05) than those measured in both barley and wheat. Additionally, significant variation in coleoptile length (P \u3c 0.05) was also found within each set of wheat (3.52–6.41 cm), barley (4.32–6.63 cm) and triticale (4.05–6.92 cm) genotypes, respectively. These findings confirm other reports that the presence of the Rht-B1b allele was pleiotropic for coleoptile length, but development of semi-dwarf wheats with longer coleoptiles is possible if breeders deploy concurrent selection strategies

    Identification of Candidate Genes and Genomic Regions Associated with Adult Plant Resistance to Stripe Rust in Spring Wheat

    Get PDF
    Wheat stripe rust (caused by Puccinia striiformis f. sp. tritici) is a major disease that damages wheat plants and affects wheat yield all over the world. In recent years, stripe rust became a major problem that affects wheat yield in Egypt. New races appeared and caused breakdowns in the resistant genotypes. To improve resistance in the Egyptian genotypes, new sources of resistance are urgently needed. In the recent research, a set of 95 wheat genotypes collected from 19 countries, including Egypt, were evaluated for their resistance against the Egyptian race(s) of stripe rust under field conditions in the two growing seasons 2018/2019 and 2019/2020. A high genetic variation was found among the tested genotypes. Single marker analysis was conducted using a subset of 71 genotypes and 424 diversity array technology (DArT) markers, well distributed across the genome. Out of the tested markers, 13 stable markers were identified that were significantly associated with resistance in both years (p-value ≤ 0.05). By using the sequence of the DArT markers, the chromosomal position of the significant DArT markers was detected, and nearby gene models were identified. Two markers on chromosomes 5A and 5B were found to be located within gene models functionally annotated with disease resistance in plants. These two markers could be used in markerassisted selection for stripe rust resistance under Egyptian conditions. Two German genotypes were carrying the targeted allele of all the significant DArT markers associated with stripe rust resistance and could be used to improve resistance under Egyptian conditions

    Genome-Wide Association Study Reveals Novel Genomic Regions Associated with 10 Grain Minerals in Synthetic Hexaploid Wheat

    Get PDF
    Synthetic hexaploid wheat (SHW; Triticum durum L. x Aegilops tauschii Coss.) is a means of introducing novel genes/genomic regions into bread wheat (T. aestivum L.) and a potential genetic resource for improving grain mineral concentrations. We quantified 10 grain minerals (Ca, Cd, Cu, Co, Fe, Li, Mg, Mn, Ni, and Zn) using an inductively coupled mass spectrometer in 123 SHWs for a genome-wide association study (GWAS). A GWAS with 35,648 single nucleotide polymorphism (SNP) markers identified 92 marker-trait associations (MTAs), of which 60 were novel and 40 were within genes, and the genes underlying 20 MTAs had annotations suggesting a potential role in grain mineral concentration. Twenty-four MTAs on the D-genome were novel and showed the potential of Ae. tauschii for improving grain mineral concentrations such as Ca, Co, Cu, Li, Mg, Mn, and Ni. Interestingly, the large number of novel MTAs (36) identified on the AB genome of these SHWs indicated that there is a lot of variation yet to be explored and to be used in the A and B genome along with the D-genome. Regression analysis identified a positive correlation between a cumulative number of favorable alleles at MTA loci in a genotype and grain mineral concentration. Additionally, we identified multi-traits and stable MTAs and recommended 13 top 10% SHWs with a higher concentration of beneficial grain minerals (Cu, Fe, Mg, Mn, Ni, and Zn), a large number of favorable alleles compared to low ranking genotypes and checks that could be utilized in the breeding program for the genetic biofortification. This study will further enhance our understanding of the genetic architecture of grain minerals in wheat and related cereals
    • …
    corecore