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Abstract: Wheat stripe rust (caused by Puccinia striiformis f. sp. tritici) is a major disease that damages
wheat plants and affects wheat yield all over the world. In recent years, stripe rust became a major
problem that affects wheat yield in Egypt. New races appeared and caused breakdowns in the
resistant genotypes. To improve resistance in the Egyptian genotypes, new sources of resistance are
urgently needed. In the recent research, a set of 95 wheat genotypes collected from 19 countries,
including Egypt, were evaluated for their resistance against the Egyptian race(s) of stripe rust under
field conditions in the two growing seasons 2018/2019 and 2019/2020. A high genetic variation
was found among the tested genotypes. Single marker analysis was conducted using a subset of
71 genotypes and 424 diversity array technology (DArT) markers, well distributed across the genome.
Out of the tested markers, 13 stable markers were identified that were significantly associated
with resistance in both years (p-value ≤ 0.05). By using the sequence of the DArT markers, the
chromosomal position of the significant DArT markers was detected, and nearby gene models were
identified. Two markers on chromosomes 5A and 5B were found to be located within gene models
functionally annotated with disease resistance in plants. These two markers could be used in marker-
assisted selection for stripe rust resistance under Egyptian conditions. Two German genotypes were
carrying the targeted allele of all the significant DArT markers associated with stripe rust resistance
and could be used to improve resistance under Egyptian conditions.

Keywords: marker-assisted selection; single marker analysis; stripe rust; coefficient of infection;
DArT markers

1. Introduction

Wheat (Triticum aestivum L.) is one of the most important crops all over the world [1,2].
During the life cycle of wheat, plants are attacked by different pathogens, including stripe
rust (caused by Puccinia striiformis f. sp. tritici), which is considered a major global threat to
wheat production [3–5]. Infection by stripe rust pathogens can occur at any time during
the wheat growing season, from the one-leaf stage to maturity, resulting in a decreasing
number of kernels/head and kernel mass/plant [6]. Applying fungicides can control stripe
rust. However, fungicides are expensive, could be ineffective if not applied on time and
harm the environment. On the other hand, planting resistant genotypes is a more effective,
economical and easy method in controlling stripe rust disease [7,8].
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In recent years, new stripe rust races appeared and spread rapidly worldwide; these
races are highly aggressive and can survive under high-temperature conditions [9]. These
new races broke the resistance in some Egyptian important genotypes such as Misr_2,
Giza_168 and Sakha_61 [10]. Due to this situation, a search for new sources of resistance
against the Egyptian rust race(s) is urgently required. Due to the low diversity of the
genetic background in Egyptian wheat genotypes, the identification of new sources of
resistance in worldwide spring wheat genotypes is urgently needed. Identified new sources
of resistance could be used in future breeding programs to accelerate stripe rust resistance
in Egyptian wheat.

The first step in breeding resistant genotypes is understanding the genetic control
of the resistance [11,12]. At present, there are 80 genes identified for resistance to stripe
rust in wheat, and more than 300 temporarily designated genes and QTL have been
reported [13–15]. Furthermore, more than 160 quantitative trait loci (QTLs) have been des-
ignated in 49 regions on the 21 wheat chromosomes controlling stripe rust resistance [16,17].
All these resistance genes/QTLs could be classified into two different types: seedling resis-
tance genes/QTLs (also known as all-stage resistance (ASR)) and adult plant resistance
genes/QTLs (APR). An ASR gene is effective against a specific race or a small number of
races and provides resistance beginning from the seedling growth stage through to the
entire growth cycle. On the other hand, APR genes are race non-specific and are expressed
only at the adult growth stage [6,7,18]. Identification and mapping of both ASR and APR
resistance genes help wheat breeders to combine both resistance types into a single ge-
netic background and hence achieve durable and long-lasting stripe rust protection in
cultivars [6–8].

Many genetic approaches could be used in mapping resistance genes in plants, such as
QTL mapping and genome-wide association study (GWAS). Both methods identify marker
alleles associated with the targeted trait. Different types of molecular markers could be used
to conduct these analyses, such as simple sequence repeat (SSR), diversity arrays technology
(DArT), sequence-tagged sites (STS) or single nucleotide polymorphisms (SNPs). DArT
markers were reported as a marker technology that provides high genome coverage,
reduces the complexity of the genome and is cost-competitive [19]. This technology has
recently gained increasing attention, although it was developed many years ago [20–23]. It
has been used widely in mapping QTLs associated with different traits in plants, including
stripe rust resistance in wheat [16,24–27]. The objectives of this study were to (1) identify
the genetic diversity of the Egyptian and other spring wheat genotypes in their resistance
to the Egyptian race(s) of stripe rust, (2) understand the genetic control of the resistance
against the Egyptian race(s) of stripe rust, (3) identify some DArT markers and genomic
regions associated with stripe rust resistance to be used in marker-assisted selection for
stripe rust resistance in wheat and (4) select the best resistant genotypes to be used in
improving stripe rust resistance under Egyptian conditions in future breeding programs.

2. Materials and Methods
2.1. Plant Materials

In this study, a set of 95 spring bread wheat genotypes were used to understand the
genetic control of wheat resistance to the Egyptian race(s) of stripe rust. These genotypes
represented new and old cultivars from 19 different countries collected by the USDA-
ARS, Aberdeen, ID, USA (Figure S1 and Table S1). Seeds of all the tested genotypes were
obtained from the USDA-ARS, Aberdeen, ID, USA, except seeds of the Egyptian genotypes
that were obtained from the Egyptian Governorate.

2.2. Evaluation of Stripe Rust Resistance

The tested genotypes were evaluated for their resistance to the Egyptian race(s) of
P. striiformis f. sp. tritici at the adult growth stage. The evaluation was conducted under
field conditions using natural infection. The experiments were conducted for two years
(2018/2019 and 2019/2020) at Sids Agricultural Research Station, Egypt. Both experiments
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were planted using a randomized complete block design. In each growing season, three
replications were planted. Each tested genotype was represented in a single one-meter row
with 30 cm row spacing in each replication. Furthermore, the experiment was surrounded
by a spreader area planted with a mixture of Morocco and Thatcher, two highly susceptible
varieties, to make sure that infection would occur. The spreader area was inoculated
artificially with a mixture of urediniospores collected from the Egyptian fields in the
previous growing seasons. The infection of the tested genotypes occurred naturally from
the surrounding spreaders.

Adult plant resistance was evaluated using two different parameters, disease severity
(DS) and infection type (IT) [28]. IT was recorded according to the Stakman et al., (1962) [29]
scale (I, R, MR, MS and S), as described by Roelfs et al., (1992) [30]. It was then converted
to numbers as described by Abou-Zaid and Mourad 2021 [31]. To calculate the coefficient
of infection (CI), DS was multiplied by the converted IT as described by Shewaye, et. al.
(2018) and Abouzeid and Mourad (2021) [31,32]. Based on the original IT, the genotype
was considered resistant if it had MR, R or immune ITs (0–0.4). However, based on the DS,
resistant genotypes should have 10% or less of leaf coverage. Therefore, genotypes that
had CI% ≤ 4% were considered as resistant genotypes.

2.3. Statistical Analysis of Stripe Rust Resistance

The analysis of variance (ANOVA) was calculated for the CI values using R soft-
ware [33], using the following model:

Yijk = µ+ gi+ rj+ yk+ gyik + eijk

where Yijk is an observation of genotype i in replication j which was planted in year k, µ is
the general mean; gi, rj, and yk are the main effects of genotypes (fixed effects), replications
(random effects) and years (random effects), respectively; gyik is the interaction of the
genotypes in the two years; eijk is the error. The broad-sense heritability (H2) was calculated
as described in Abou-Zeid and Mourad 2021 [31]

2.4. Genotyping of the Tested Genotypes Using DArT Markers

In the recent study, 71 genotypes of the tested genotypes were genotyped using
424 DArT markers. The DArT markers’ information was a part of a stripe rust resistance
study carried out by Maccaferri et. al. (2015) [34] in fields in the U.S.A.. Marker information
is available on the website of the U.S. National Plant Genome system (https://npgsweb.
ars-grin.gov/gringlobal/search.aspx), (accessed on 9 December 2021). Available DArT
markers were used to calculate polymorphic information content (PIC) using PowerMarker
software [35], using the following formula:

PIC = 1−
n

∑
j=1

P2
ij −

n=1

∑
j=1

n

∑
k=j+1

2P2
ij P2

ik

where Pij and Pik are the frequencies of jth and kth alleles for marker i, respectively.
Besides this, principal component analysis (PCA) was used for the tested genotypes

based on the available DArT markers using TASSEL software [36].

2.5. Single Marker Analysis (SMA) of Stripe Rust Adult Plant Resistance

CI data, as well as the available data of the 424 DArT markers of the tested 71 geno-
types, were used to perform SMA to identify DArT markers significantly associated with
adult resistance in the tested genotypes. Single marker analysis was performed using
PowerMarker software V 3.25 [35]. For each significant marker, the phenotypic variation
explained by the marker, as well as the allele effect of each marker, was estimated using
TASSEL 5.0 software [36].

https://npgsweb.ars-grin.gov/gringlobal/search.aspx
https://npgsweb.ars-grin.gov/gringlobal/search.aspx
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2.6. Gene Models Underlying Each Significant DArT Marker and Their Annotations

The sequence of the significant DArT markers was obtained from Diversity Array
Technology, available at https://www.diversityarrays.com/technology-and-resources/
sequences. The sequences of these markers were blasted against the wheat genome using
the EnsemblPlants database available at this link: https://plants.ensembl.org/Triticum_
aestivum/Tools/Blast. The best blasts were detected based on the chromosomal location
of the DArT marker, the highest length of the blast, the highest percentage of identity
(ID%) and the lowest p-value. In order to compare the chromosomal position of the best
blast and the different available gene models with the highest confidence, possible gene
models controlling the resistance were identified. The distance between the significant
markers and high-confidence gene models was visualized using MapChart software [37].
Using the international wheat genome sequencing consortium (IWGSC), the functional
annotation of these gene models was investigated and their association with stripe rust
resistance was examined. Furthermore, the expression of the identified gene models was
compared under controlled conditions with disease conditions at adult plant stages using
the Wheat Expression Browser “http://www.wheat-expression.com/”, (accessed on 9
December 2021).

3. Results
3.1. Phenotypic Variation for Stripe Rust Resistance in the Tested Genotypes

Highly significant differences were identified among the tested genotypes for their
resistance against the Egyptian race(s) of stripe rust pathogen, based on the analysis of
variance (ANOVA). Highly significant differences were found between the years. The
genotype x years interaction was highly significant, while no significant differences were
found among the replications. Broad-sense heritability was 0.63 across the two years
(Table 1). A highly significant correlation was found between the two years (r = 0.61,
p-value > 0.01 (Figure S2).

Table 1. Analysis of variance for stripe rust resistance in the 95-spring wheat genotypes.

Source d.f M.S.

Years (Y) 1 27122.56 **
Replications (R) 2 1839.41
Genotypes (G) 86 3799.96 **

GY 85 1402.18 **
GYR 289 941.92

Heritability 63.10
** p < 0.01.

The percentage of the coefficient of infection (CI) ranged from 0% to 100% in both
years (2018/2019 and 2019/2020) (Figure 1). The susceptible check “Morocco” showed
a very susceptible response to stripe rust, with a CI% of 100% and 93.33% in 2018/2019
and 2019/2020, respectively. Also, the susceptible check “Thatcher” had a CI% of 100%
in 2018/2019 but was absent in 2019/2020. The number of susceptible genotypes (with a
percentage of CI 50% or more) was higher in 2018/2019 than in 2019/2020, with a total
number of 43 and 19 in 2018/2019 and 2019/2020, respectively. Out of the 19 genotypes
that were susceptible in 2019/2020, 18 were susceptible in both 2018/2019 and 2019/2020
(Figure 2a and Table S2). On the other hand, 22 and 20 genotypes were resistant to stripe
rust (CI ≤ 4%) in 2018/2019 and 2019/2020, respectively. Only ten genotypes had the same
resistant reaction to stripe rust in both years (Figure 2b). These resistant genotypes are from
five different countries: Egypt (three genotypes), Germany (two genotypes), Saudi Arabia
(one genotype), the United Kingdom (one genotype) and the U.S.A (three genotypes).
(Table S3).

https://www.diversityarrays.com/technology-and-resources/sequences
https://www.diversityarrays.com/technology-and-resources/sequences
https://plants.ensembl.org/Triticum_aestivum/Tools/Blast
https://plants.ensembl.org/Triticum_aestivum/Tools/Blast
http://www.wheat-expression.com/
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Figure 1. The response of the 95-tested genotypes to stripe rust at the adult plant stage under the Egyptian conditions at
2018/2019 and 2019/2020.
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3.2. Marker Distribution and Principal Coordinate Analysis

A total number of 424 polymorphic DArT markers were available for 71 genotypes.
Out of these markers, 382 (90.09%) had a known chromosomal position, and they covered
the whole wheat genome. The B genome was found to carry the highest number of
markers, with a percentage of 45% (171 markers). The lowest number, on the other hand,
was located on genome D, with a percentage of 17% (66 markers). There were 42 markers
located on unknown chromosomal positions with a percentage of 10%. The total number
of markers/chromosomes ranged from one marker on chromosome 4D to 38 makers
on chromosome 3B (Figure S3a). The PIC value ranged from 0.1 (four markers) to 0.5
(30 markers) across the chromosomes. The majority of markers showed 0.4 of PIC value
with a total number of 142 markers (Figure S3b).

The result of principle-component analysis (PCA) classified the tested genotypes
into two groups, with a size of nine and 86 genotypes for groups 1 and 2, respectively.
The common ten resistant genotypes are located in the second group, while common
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susceptible genotypes were distributed between both groups with the number of four and
14 genotypes in group 1 and group 2, respectively (Figure 3).
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3.3. Single Marker Analysis (SMA) of Adult Plant Resistance to Stripe Rust

Single marker analysis identified 39 and 48 DArT markers significantly associated
with stripe rust resistance (p-value ≤ 0.05) in 2018/2019 and 2019/2020, respectively
(Figure 4, Tables S4 and S5). Out of these identified markers, 13 markers were stable and
significantly associated with the resistance in both years. These stable markers were each
located on chromosomes 2A, 2B, 3B, 3D, 5A, 5B and 6D, and two markers were located on
chromosomes 6B, 7A and 7D, with the p-value ranging from 0.000 to 0.037 in 2018/2019
and from 0.000 to 0.048 in 2019/2020 (Table 2 and Figure 4b). The phenotypic variation
explained by these markers (R2) ranged from 4.38% (WPT-743380) to 17.21% (WPT-9088)
in 2018/2019 and from 0.09% (WPT-5736) to 20.30% (WPT-9589) in 2019/2020. Marker
“WPT-9088” had the highest allelic effect, increasing stripe rust resistance by a percentage
of 36.09% and 27.63% in 2018/2019 and 2019/2020, respectively. Meanwhile, marker “WPT-
9589” had the highest allelic effect associated with decreasing resistance, with a value of
30.85% and 32.14% in 2018/2019 and 2019/2020, respectively.

Table 2. Significant stable DArT markers for stripe rust resistance across the tested years (2018/2019 and 2019/2020) based
on single marker analysis (p-value 0.05).

DArT Marker Chromosome
p-Value Allele Effect (%) R2 (%)

2019 2020 2019 2020 2019 2020

WPT-3976 2A 0.015 0.044 −24.36 −19.21 11.55 9.80

WPT-5736 2B 0.037 0.048 1.66 13.89 4.55 0.09

WPT-9088 3B 0.000 0.002 −36.09 −27.63 17.21 15.00

WPT-0485 3D 0.005 0.027 −23.89 −20.14 10.50 10.24

WPT-9094 5A 0.010 0.004 19.02 24.98 7.58 16.81
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Table 2. Cont.

DArT Marker Chromosome
p-Value Allele Effect (%) R2 (%)

2019 2020 2019 2020 2019 2020

WPT-9724 5B 0.030 0.046 −16.66 −13.81 6.38 5.90

WPT-9256
6B

0.033 0.001 −17.84 −26.54 6.95 19.42
WPT-9589 0.001 0.000 30.85 32.14 13.38 20.30

RPT-7068 6D 0.016 0.013 20.38 22.04 8.37 13.42

WPT-4835
7A

0.009 0.023 −24.21 −16.99 13.96 9.79
WPT-6447 0.002 0.002 −25.38 −24.05 14.96 17.55

WPT-743380
7D

0.009 0.015 19.10 13.37 4.38 10.98
WPT-744976 0.008 0.018 15.26 19.11 5.59 10.71
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3.4. Validation of the Identified Genomic Regions Associated with Stripe Rust Resistance

To validate the association between the significant markers and stripe rust resistance,
the sequence of the significant DArT markers was obtained from the Diversity Array
Technology website for all the 13 significant stable markers expect WPT-3976 (2A) and
RPT-7068 (6D), which did not have available sequence information. These sequences
were blasted against the wheat genome using the EnsemblPlants database. Based on the
chromosomal location of the DArT markers, the length of the marker and the identified
sequence, the highest percentage of identity (ID%) and the lowest p-value, the possible
positions of the eleven significant DArT markers were detected (Table 3). Furthermore, gene
models with high confidence located near or within the detected position were investigated.
Out of the eleven markers, four markers (WPT-9088 (3B), WPT-0485 (3D), WPT-9589 (6B),
and WPT-4835 (7A)) were located neither near nor within high-confidence gene models
(Table 3). Five markers were located very near to high-confidence gene models (WPT-
5736 (2B), WPT-9256 (6B), WPT-6447 (7A), WPT-743380 (7D) and WPT-744976 (7D)). Two
markers were located within high-confidence gene models WPT-9094 on chromosome 5A
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and WPT-9724 on chromosome 5B (Figure 5). The functional annotation of all identified
gene models has a strong relation to disease resistance in plants (Table 3).

Table 3. Possible chromosomal location of the 11 significant DArT markers, gene models that are located within or near the
DArT markers and their functional annotation based on the PlantEnsemble database.

Marker Chro.
Marker
Length

(bp)

Blast
Length

(bp)

Blast
Position ID% p-Value Gene

Model

Gene
Position

(bp)
Gene Annotation

WPT-5736 2B 494 34 798127191-
798127269 97.10% 6.1 × 10−6

TraesCS2B
02G625200

798128178-
798132084 UniProtKB-W5B9H0

TraesCS2B
02G625300

798134799-
798139436

E3 ubiquitin-protein
ligase

WPT-9088 3B 518 510 47651816-
47652325 100% 0 NA NA NA

WPT-0485 3D 376 376 605639199-
605639574 98.9 0 NA NA NA

WPT-9094 5A 518 516 536984272-
536984787 98.40% 0 TraesCS5A

02G327200
536984557-
536989401 5′-3′ exoribonuclease 3

WPT-9724 5B 573 573 20040488-
20041060 99.8% 0 TraesCS5B

02G020900
20040488-
20041060

Glutathione
S-transferase

WPT-9256 6B 748 143 711392100-
711392242 97.2 1.20 × 10−63 TraesCS6B

02G452700
711372963-
711375917

Hepatocellular
carcinoma-associated

antigen 59 family
protein, expressed

WPT-9589 572 101 715201767-
715201867 96 1.1 × 10−38 NA NA NA

WPT-6447
7A

568 120 691517984-
691518114 85.5 5.30 × 10−19 TraesCS7A

02G502500
691521202-
691522644

Eukaryotic aspartyl
protease family protein

WPT-4835 574 120 691517990-
691518109 86.7 2.2 × 10−21 NA NA NA

WPT-
743380 7D 869 791 8220754-

8221544 99.9 0 TraesCS7D
02G018400

8223605-
8224570

NBS-LRR disease
resistance protein-like

protein
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In the remaining part of our manuscript, we focused only on the significant markers
harboring high-confidence gene models. As a result, two markers–WPT-9094 (susceptible
effect, 5A), and WPT-9724 (resistant effect, 5B)–were taken into account. The presence
of these two markers and their coefficient of infection were investigated in the resistant
and susceptible genotypes. The percentage of agreement between the presence of each
marker and the expected reaction based on the marker effect was calculated in each group
of genotypes (Figure 6). A high percentage of agreement was found for both markers in
the resistant genotypes, with a percentage of 85.7%. Meanwhile, a lower percentage of
agreement for both markers was found in the susceptible genotypes, with a percentage of
53.33% and 60.00% for WPT-9094 and WPT-9724, respectively.
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Furthermore, the expression of the two identified gene models harboring significant
markers was investigated using the Wheat-Expression database. Higher expression of both
genes was found at the reproductive growth stage for both genes under disease conditions
compared with the controls. However, the same expression of the TraesCS5A02G327200
gene model was found under both controlled and disease conditions at the vegetative
growth stage. Besides this, very little expression was found for the TraesC25B02G020900
gene model under disease conditions with a value of 0.011 tpm compared with 0.00 tpm
under controlled conditions (Figure 7).

3.5. Selection of Superior Genotypes for Stripe Rust Resistance in the Studied Materials

To genetically emphasize resistance in the common resistant genotypes listed in Table
S3, the number of targeted alleles of the 13 DArT markers associated with the resistance was
investigated in each genotype (Figure 8a). Unfortunately, no available DArT marker data
were available for the three highly resistant Egyptian genotypes. The two German resistant
genotypes (PI_313101 and PI_343730) contained all the targeted alleles for the 13-significant
DArT markers. The Saudi Arabian genotype PI_574346 had the lowest number of targeted
alleles (seven alleles). The number of targeted alleles in the genotypes from the U.K. and
the U.S. ranged from eight to 12 alleles.
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Figure 8. (a) Number of targeted alleles of DArT markers significantly associated with stripe rust resistance in the highly
resistant genotypes (with a coefficient of infection of 4% or less), (b) The genetic distance between each pair of the high
resistance genotypes with a coefficient of infection of 4% or less.

The genetic distance between each pair of the resistant genotypes was calculated to
confirm their suitability to be crossed for improving stripe rust resistance (Figure 8b and
Table S6). The genetic distance ranged from 0.20 between the two German genotypes
(PI_313101 and PI_343730) to 0.74 between the German genotype PI_313101 and the Ameri-
can genotype PI_599988. The Saudi Arabian genotype PI_574346 was genetically near to
the two American genotypes PI_620714 and PI_599988, while the third American genotype
PI_595213 was found to have a small genetic distance from the English genotype PI_339818.

4. Discussion

The appearance of new stripe rust races has led to a lack of resistance in many Egyptian
wheat genotypes. This situation threatens wheat production in Egypt, North Africa and
the Middle East. As a result, new sources are urgently needed to improve resistance in the
Egyptian wheat germplasm. The evaluation of the recent panel that represents new and
old cultivars of spring wheat from different 19 countries will enable the identification of
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the possible source of resistance genes and enhance the future of wheat breeding in the
Middle East.

4.1. Genetic Variation of Stripe Rust Resistance in the Tested Genotypes

The high percentage of CI% (more than 93.3%) in both susceptible checks–Morocco
and Theater–indicated that the natural infection occurred sufficiently in both years and
that our evaluation is accurate. Highly significant differences were found amo ng the
tested genotypes in their adult plant resistance to the Egyptian races of stripe rust which
indicated the success of our evaluation and the high genetic variation that existed in
our tested materials (Table 1). The percentage of CI ranged from 0–100% in both years
(2018/2019–2019/2020), confirming the high genetic variation. The presence of high genetic
variation among the tested genotypes is very useful in selecting the resistant genotypes
against the Egyptian stripe rust race(s). Highly significant differences were found between
the years, and the genotypes x years interaction indicated the different responses of the
genotypes in 2018/2019 and 2019/2020. The high degree of broad-sense heritability (H2

B
= 0.63) indicated that most of the phenotypic variation in stripe rust resistance is due to
genotypic variation. This concluded that the phenotypic variation is stable, and that the
selection of highly resistant genotypes will be successful in future breeding programs. The
presence of a highly significant correlation between the two years (r = 0.61, p-value <0.01)
could serve to increase the resistance in the different years under the Egyptian environmen-
tal conditions, as well as suggesting that selection in one year could be a good predictor of
the next year.

Out of the tested genotypes, ten genotypes were resistant to stripe rust in both years,
with a percentage of CI of 4% or less. These genotypes are cultivars from five different coun-
tries: Saudi Arabia (one genotype), the United Kingdom (one genotype), Germany (two
genotypes), Egypt (three genotypes) and the United States (three genotypes) (Table S2). The
three Egyptian genotypes (Misr-2, Sids-14 and Shandweel-1) were previously reported to be
resistant to the Egyptian race(s) of stripe rust, indicating the reliability of our dataset [38–40].
However, a CI% of 4% was found in Sids-14 in the 2019/2020 growing season, indicating
the beginning of the overcoming of resistance in these genotypes. As a result, there is an
urgent need to improve resistance in the Egyptian genotypes. Understanding the genetic
control of resistance in these three genotypes will enable wheat breeders to improve resis-
tance by increasing genes, controlling resistance against the Egyptian races. Genotypes
from the remaining four countries (Germany, Saudi Arabia, the United Kingdom and the
U.S.A) could be used to improve resistance in the Egyptian germplasm if they contain
different genetic systems that control the resistance. Moreover, integrating exotic resistant
genotypes will help to increase genetic diversity, which could be highly useful not only for
stripe rust resistance but also for other agronomic features.

4.2. Genetic Analysis of Adult Plant Resistance to Stripe Rust in the Tested Genotypes

To effectively utilize the resistance presented in the recently tested genotypes, it is
important to understand the genetic characterization of stripe rust resistance. In the recent
study, 424-DArT markers of 71 genotypes were used in the genetic analysis to identify
the genetic control of the stripe rust adult plant resistance. DArT markers have been
reported as a cost-effective and high-throughput marker system that has been used to
characterize different agronomic traits, as well as biotic and abiotic stress resistance in
wheat using association mapping (AM) [24,41–46]. The AM relies mainly on testing the
association between a single marker and a phenotypic trait. This could be done using
different kinds of analysis, such as genome-wide association study (GWAS), which requires
more than 100 genotypes to be efficient [47], and SMA, which could be done using any
number of genotypes. In the recent study, the number of genotypes (71) is appropriate
for SMA analysis [48]. Furthermore, studied DArT markers are well distributed across
the three hexaploid wheat genomes (A, B, and D), with the highest number of markers on
genome B and the least number on genome D (Figure S3a). Previous studies concluded
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that genome B is the most diverse wheat genome, while genome D is the least diverse
genome [49–56]. The average PIC value of the studied marker is 0.35, which is quite
similar to previous studies [50,56,57]. This PIC value was reported as a good indicator of
informative markers [58]. Based on the good distribution of the DArT markers and the
appropriate PIC value, we can conclude that this set of DArT markers is highly appropriate
for AM studies.

The PCA classified the tested genotypes into two groups. The resistant genotypes
were located in the same group, which concluded the genetic similarity of the ten resistance
genotypes despite their different origin. This could be illustrated by the gene flow of the
different genotypes among the different regions. The high genetic similarity of the ten
resistant genotypes concluded that improving stripe rust resistance in the Egyptian wheat
background could be done using this set of genotypes. As a result, we can conclude that
the studied panel is a highly diverse one, with a minimum effect of population structure
on it, which makes this panel highly appropriate for AM [59].

4.3. Identification of Genomic Regions Associated with Stripe Rust Adult Plant Resistance

SMA identified a set of 13 stable DArT markers associated with stripe rust resistance
in both years (Figure 4 and Table 2). Based on the chromosomal location of the identified
DArT markers, there are several genomic regions distributed on ten different chromosomes
controlling the resistance. Previous studies concluded that QTLs that explain less than 10%
of the phenotypic variation are minor QTLs, while major QTLs explain more than 10%
of the phenotypic variation [60–62]. In our study, the identified QTLs/genomic regions
could be classified into minor QTLs (seven in 2018/2019 and four in 2019/2020) and major
QTLs (six in 2018/2019 and nine in 2019/2020). The seven genomic regions which differ
from minor to major effects in both years confirm the significant interaction between the
genotypes and the years (GxY), as the response of the same genotype differed from year
to year. Based on the allelic effect of the identified markers, six markers were found to
be significantly associated with increasing the susceptibility of the genotypes to stripe
rust, while the remaining seven markers were associated with increasing the resistance
(Table 2). The identified significant markers were distributed across the wheat genome,
which indicates the presence of many QTLs controlling resistance across the wheat genome.
Previous studies concluded that there are many QTLs controlling stripe rust resistance in
wheat, and that these QTLs are distributed across the wheat genome, which confirmed our
results [31,63–69].

To further investigate the genetic association between the significant markers and
stripe rust resistance, genomic regions carrying the sequence of the significant DArT
markers were investigated. The available sequences were blasted against the wheat genome
using the EnsemblPlants database to determine the exact position of these significant
markers. EnsemblPlants was recorded as an integrative approach that provides the useful
genome-sequence information of several plant species, including wheat [70]. The result of
the sequence blasts in the EnsemblPlants database should be taken carefully, and filtration
should be done based on the percentage of identity, p-value and blast length [70]. In our
recent study, the high percentage of identity (ID%) that ranged from 85.5 to 100%, the
highest blast length and low p-values indicated that the results obtained in this study could
be trusted. Out of the 13 significant DArT markers, five were located near high-confidence
gene models annotated to be related with disease resistance in plants, and two markers
(WPT-9094 (5A), and WPT-9724 (5B)) were located within high-confidence gene models
based on the IWGSC v2.0 database. The ID% of these two markers were very high, with a
percentage of 98.4 and 99.8% for each marker, respectively. In addition, the blast lengths of
both markers were very high, indicating that the identified position is the exact position of
the targeted markers.

The DArT marker “WPT-9094” on chromosome 5A was found to be overlapping
TraesCS5A02G327200 gene model with a size of 230bp, indicating that this marker is
a part of the identified gene model. The functional annotation of this gene model was
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associated with 5′-3′ exoribonuclease 3. The putative function of this protein is the exosome
complex exonuclease RRP46 (Ribosomal RNA-processing protein 46), which is a protein
involved in rRNA processing and a component of the exosome 3′–>5′ exonuclease complex.
Recent studies concluded that some ribosomal genes are involved in plant defense and
cell death [71–73]. Therefore, the abundance of ribosomal RNA and protein modifies
the plant’s metabolism, destroys the plant’s defense system and facilitates cell-death
development upon the pathogen attack [74]. The functional annotation of this gene model
is in agreement with the allele effect of the associated DArT marker, which confirms our
results. Furthermore, the WPT-9094 DArT marker was mapped on the position 58.3 cM
on the long arm of chromosome 5A, and was surrounding two QTLs controlling stripe
rust adult plant resistance [66]. Two stripe rust resistance genes were previously mapped
on 5AL, Yr48 and Yr34 [69]. However, comparing the position of their linked markers
(WPT-7061 and KASP markers) and the position of WPT-9094, they were found to be far
from each other and harboring different gene models (TraesCS5A02G558500, for WPT-7061
marker). In addition, previous studies identified major stable QTLs on the long arm of
chromosome 5A (220–226 cm), controlling stripe rust adult plant resistance [75]. Based on
this study, the identified gene model is far away from previously reported gene models
associated with stripe rust resistance. Comparing our results with those of previous studies,
we can conclude that the gene model identified by the WPT-9094 marker could be a novel
gene associated with stripe rust adult plant resistance. The higher percentage of agreement
between the absence of the significant DArT marker in the resistance genotypes (85.7%) and
lower agreement with the presence of this marker in the susceptible genotypes concluded
that the WPT-9094 marker could be used for MAS for stipe rust resistance under Egyptian
conditions. More studies should be conducted to provide more information about the gene
model and the identified DArT marker.

The sequence of the DArT marker “WPT-9724” on chromosome 5B was found to be the
same sequence as that of the gene model TraesCS5B02G020900. This gene model was found
to be functionally annotated as Glutathione S-transferase. This enzyme plays an important
role in plant-pathogen interaction, which increases plant resistance against pathogens by
the detoxification of toxic lipid hydroperoxides that accumulate during infections and
induce a systemic resistance response (ISR) to subsequent pathogen infections [76]. The
allele effect of the DArT marker was found to increase resistance and reduce stripe rust
symptoms, which confirms the function annotation of the linked gene model. The DArT
marker “WPT-9724” has been mapped on the long arm of the 5B chromosome with the
position of 199.7 cM [77]. It was previously reported to be associated with stem rust
resistance in wheat [78]. This DArT marker was not associated with stripe rust resistance
under U.S. conditions based on Maccaferri et al.’s (2015a) QTL map, which concluded
that stripe rust races are different in the U.S.A. from those that exist in Egypt, and both
have two different genetic systems controlling their resistance in wheat. Some stripe rust
resistance genes such as Yr3, in addition to many QTLs controlling stripe rust resistance,
were mapped on chromosome 5B, which supported our results. However, no information
is available about the effectiveness of the Yr3 resistance gene against the Egyptian race(s).
Based on our result, the gene model TraesCS5B02G020900 seems to be a novel stripe
rust resistance gene that could be markedly selected using the DArT marker WPT-9724.
The high agreement between the presence of this DArT marker in the resistant genotypes
(85.7%) and the absence of the marker in the susceptible genotypes (60%) could be explained
as the resistant alleles masking other resistance alleles, although when they are present,
other resistant alleles could be involved. However, these results concluded that more
caution should be taken when using this DArT marker in MAS for stripe rust resistance
in wheat. More studies are needed to provide more information about the association
between the DArT marker and the identified gene model.
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4.4. Selection of Superior Genotypes to Stripe Rust Resistance in the Currently Studied Genotypes

To confirm the possibility of improving stripe rust resistance against the Egyptian
race(s) using the currently studied materials, the number of the targeted alleles of the
common significant DArT markers was investigated in each one of the high resistance
genotypes. Unfortunately, no DArT markers were available for the three Egyptian resistant
genotypes. As a result, we could not confirm the possibility of improving resistance in
the current Egyptian genotypes. However, we would be able to select the best genotypes
to be crossed together in order to pyramid many resistance genes against the Egyptian
race(s). Genotypes with as many as pyramid resistance genes could be used directly as
an Egyptian cultivar if they are highly adapted to the Egyptian environment, or could be
crossed with the Egyptian genotypes after confirming that they carry different resistance
alleles. The presence of different targeted alleles/genotypes confirms that resistance against
the Egyptian race(s) of stripe rust could be improved using the current materials. The
two German genotypes seem to be the best genotypes to improve resistance against the
Egyptian race, as they carry all the targeted alleles of the thirteen DArT markers.

The genetic distance between the two German genotypes and the five remaining
genotypes was high and ranged from 0.56 to 0.74. Previous studies concluded that crossing
between genotypes with a high genetic distance produces lines with a high combining
ability and distinct alleles controlling the trait [79]. Therefore, crossing between any of these
two German genotypes and the remaining five genotypes will be useful. In addition, the
genetic distance between each pair of the remaining five genotypes was high, confirming
the successful crossing to pyramid many resistant genes in one genotype.

5. Conclusions

In conclusion, the high genetic variation in the 95 genotypes tested for their resistance
against the Egyptian race(s) of stripe rust indicates that stripe rust-resistant genotypes
could be selected from the studied materials. A set of thirteen DArT markers significantly
associated with the resistance were identified. Out of these significant markers, two
markers, WPT-9094 on chromosome 5A and WPT-9724 on chromosome 5B, were located
within gene models functionally annotated to be associated with disease resistance in the
plant. These two markers could be used in MAS for stripe rust resistance in wheat. The
two gene models seem to be novel genes controlling resistance, because to our knowledge
their locations do not match the location of any genes previously associated with stripe rust
resistance. The two highly resistant German genotypes could be used to improve resistance
against the Egyptian race(s) of stripe rust, as they contain all the targeted alleles of the
significant DArT markers and are genetically highly distant from the remaining resistant
genotypes; thus crossing will be successful.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/agronomy11122585/s1, Figure S1: Histogram represents the number of genotypes/country
of the 95-spring wheat genotypes used in the current study, Figure S2: Correlation between the
coefficient of infection (CI%) in 2018/2019 and 2019/2020, Figure S3: Histogram represents the
distribution of the 424-DArT markers in the spring wheat tested genotypes (a) and the distribution
of polymorphic information content (PIC) values of the tested markers, Histogram represents the
distribution of polymorphic information content (PIC) values of the tested markers (b). Table S1:
List of the 95-spring wheat genotypes used in the current study, their country of origin, and their
response to the stripe rust infection (disease severity and infection type) in the two growing seasons.
Table S2: Common susceptible genotypes (50% or more) in both years. Table S3: Common resistant
genotypes (4% or less) in both years. Table S4: Significant DArT markers for stripe rust resistance in
the season of 2018/2019, Table S5: Significant DArT markers for stripe rust resistance in the season of
2019/2020, Table S6: The genetic distance between each pair of the high resistance genotypes base on
the 424 DArT markers.
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