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A. Weiss 
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and 
P. S. Baenziger 

Department of Agronomy and Horticulture, University of Nebraska- Lincoln, Lincoln, NE 

Abstract 

Future climate changes can have a major impact on crop production. But, whatever the climatic 
changes, crop production can be adapted to climate change by implementing alternative 
management practices and developing new genotypes that will take full advantage of the future 
climatic conditions. Since the classical agronomic research approach is not possible in 
identifying these new agronomic technologies for the future climatic conditions, we used 
response surface methodology (RSM) in connection with the CERES-Wheat crop model and the 
HADCM2 climate simulation model to identify optimal configuration of plant traits and 
management practices that maximize yield of winter wheat under high CO2 environments. The 
simulations were conducted for three Nebraska locations (Havelock, Dickens and Alliance), 
which were considered representati ve of winter wheat growing areas in the central Great Plains. 
At all locations, the identified optimal winter wheat cultivar under high CO2 conditions had a 
larger number of tillers, larger kernel size, shorter days to flower, grew faster and had more 
kernels per square meter than the check variety under normal CO2 conditions, while the optimal 
planting dates were later and planting densities were lower than under normal conditions. We 
concluded that RSM used in conjunction with crop and climate simulation models was a useful 
approach to understanding the complex relationship between wheat genotypes, climate and 
management practices. 
Keywords: Response surface methodology, steepest ascent, global climate change, CERES­
Wheat model, high CO2 conditions. 

1. Introduction 

Though a debate about scientific prediction of future climatic change scenario has not 
been resolved yet, there is common consensus about rising global temperature (termed as 'Global 
Warming') and changes in concentration of green house gases in the atmosphere. The 
atmospheric concentration of CO2 has increased from about 280 ,umol/mol before the industrial 
revolution to about 358 ,umol/mol in 1994 (IPCC, 1995). Global surface temperatures have 
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increased about 0.3-0.6DC since the late 19th century (Jones et aI., 1999). Also current climate 
models have predicted an increase of the earth surface's temperature from 1.5 to 4.5 DC over next 
100 years due to increased green house gases (Houghton et aI., 1996). These models also have 
predicted that the atmospheric concentration of C02 gas could double in the next 100 years. 

The combined effect of increase in CO2 concentration and associated changes in 
temperature and precipitation pattern on crop production is difficult to evaluate. Changes in 
temperature and precipitation patterns during critical periods of crop development can have 
dramatic positive or negative impacts while increases in CO2 concentration can raise the rate of 
photosynthesis, promoting biomass accumulation, increasing plant growth and yield (Kimball 
1983; Cure and Acock, 1986). Whatever the climatic changes, crop production can be adapted 
to climate change by implementing alternative management practices and developing new 
genotypes that will take full advantage of the future climatic conditions. However, these new 
agronomic technologies cannot be identified without understanding future climatic conditions 
that are likely to result. In addition, developing new cultivars for future climate conditions is not 
possible without having knowledge of crop characteristics or traits that will allow the crop to 
take full advantage of future climate. Evaluating the possible long-term impacts of future global 
climate change on agronomic technologies such as crop genetics and management can be useful 
in understanding what types of cultivars and management practices may be necessary under 
likely future climatic conditions. 

In this type of work, it is generally not possible to conduct experiments under future 
environmental conditions, nor is it simple to approximate the cumulative changes in technologies 
over a long period of time. Identifying agronomic technologies that may be necessary under 
future global climatic conditions requires three components: (1) a method to generate or simulate 
future environmental and climatic conditions, (2) the ability to predict plant response under these 
future conditions and (3) an approach that approximates the decision process of identifying and 
selecting new agronomic technologies. Climate simulation models and crop growth and yield 
models have been used extensively to predict plant responses under future climatic conditions 
(Rosenweig et aI., 1995; Acock and Acock, 1993; Kenny et aI., 1993). However, no clear 
methodology has been proposed that simulates the long-term decision making process of 
identifying new agronomic technologies in conjunction with predicted plant responses under 
simulated future global climatic conditions. 

The decision process of identifying new agronomic technology may be conceptualized as 
an optimization procedure. Loomis (1993) also has suggested that using optimization methods 
with mathematical models of crops may be helpful in examining ideotype questions. Response 
surface methodology (RSM) is an optimization approach commonly used in industrial process 
control and engineering where the goal is to find levels of input variables that optimize a 
particular response (Myers and Montgomery, 1995). RSM proceeds sequentially with a series of 
experiments to find the area near the optimal (maximum or minimum) response where a final 
experiment is then conducted to find the 'optimal' input combinations. RSM is most useful when 
a response depends on many factors and the objective is to find the levels of these factors that 
give an optimum response. Hence, RSM used in connection with crop and climate simulation 
models can be adapted to approximate the long-term decision process of identifying agronomic 
technology that may be necessary under future climatic conditions. 

In this work, we used the CERES-Wheat model to simulate yield of a wheat crop as a 
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function of climatic variables, genetic coefficients, soil characteristics and management practices 
(Tsuji et aI., 1994). CERES-Wheat is designed to simulate daily growth and development of 
wheat plants and has been validated under a wide-range of conditions (Otter-Nacke et aI., 1986). 
To simulate weather input of future climatic conditions, we used the LARS-WG V2.6 stochastic 
weather generator, to simulate the weather data (Racsko et aI., 1991; Semenov et aI., 1998; 
Semenov et aI., 1999) based on a well-known climate model, the Hadley Center Global Climate 
Model (HADCM2)(Johns et aI., 1997). The objectives of this research are to demonstrate how to 
use RSM with crop and climate models to search for an optimal configuration of plant traits and 
crop management practices that maximize winter wheat yield under future high CO2 

environments 

2. Materials and Methods 

Based on the CERES-Wheat model and simulated weather data from HADCM2, RSM 
was used to identify the levels of the non-weather CERES-Wheat input variables (X's) that 
maximized yield under two CO2 weather scenarios (Normal: 360 ppm; High 720 ppm) at three 
Nebraska locations. We used RSM in three steps. First, using the method of steepest ascent, we 
identified the region of the CERES-Wheat input variables that gave near maximum yield. 
Second, we ran a final set of CERES-Wheat simulations to more carefully estimate the surface in 
the area of the maximum yield and to estimate the optimal inputs (X's). Finally, we evaluated the 
shape and orientation of the response surface to determine if the optimal X's gave a maximum or 
saddle point, and to identify a further path of steepest ascent if needed. 

CERES-Wheat simulates yield, growth and development of a wheat crop as a function of 
weather variables, genetic coefficients, soil characteristics and management practices (Tsuji et 
aI., 1994). The model uses seven genetic coefficients related to anthesis date, maturity date, the 
number of grains per square meter, grain weight and the number of grains per spike. In addition, 
soil characteristics and management factors related to planting, fertilization and irrigation are 
also required as input variables. The model also simulates daily growth and development of 
plants considering daily minimum and maximum temperature, precipitation and solar radiation, 
however we did not use the growth and development variables in subsequent analyses. 

Five genetic and one management factors were considered as input variables and all other 
factors were considered fixed in the optimization procedure. The five genetic factors used as 
variables were: PID - the relative amount of development that is slowed when plants are grown 
in a photoperiod 1 hour shorter than the optimum (which is considered to be 20 hours); P5 - the 
relative grain filling duration based on thermal time (degree-days above a base temperature of 10 

C), where each unit increase above zero adds 20 degree days to an initial value of 430 degree 
days; Gl - the kernel number per unit weight of stem (less leaf blades and sheaths) plus spike at 
anthesis (l/g); G2 - the kernel filling rate under optimum conditions (md/dy) ; G3 - non-stressed 
dry weight of a single stem (excluding leaf blades and sheaths) and spike (grain ear) when 
elongation ceases (g). One of the genetic factors was held constant: PI V, defined as "relative 
amount that development is slowed for each day of unfulfilled vernalization, assuming that 50 
days of vernalization is sufficient for all cultivars" was fixed at six (6) to represent winter wheat. 

Plant population density, defined as the number of plants per square meter, was used as a 
management input variable and was allowed to vary to find the optimal plant population that 
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maximized yield. Sowing dates used with the normal CO2 condition were based on the current 
management practices at each site. The sowing dates used with the high CO2 scenarios were 
chosen to approximate the dates when the mean air temperature from the high CO2 scenarios was 
the same as the mean air temperature of current sowing dates (Table 1). Nitrogen was held 
constant at 50 kg ha- 1. No irrigation was assumed and the simulation was run assuming rain-fed 
production. The remaining management variables were held constant. It was assumed that no 
biotic stresses were present. Among abiotic stresses, temperature, soil water, soil nitrogen and 
CO2 concentration were considered. The ranges of the genetic factors were based on the lowest 
and highest values for the set of released winter wheat culti vars listed in DSSA T manuals (Table 
2) ( Tsuji et al., 1994). The genetic factors were limited to these ranges since the precision of 
CERES-Wheat predictions beyond these ranges is unknown. The current data for soil 
characteristic for each of three locations were also used (Won, 2001 ). 

Two different climatic scenarios were used in this study: normal CO2 (360 p,mol/mol) 
with the current climatic conditions and high CO2 (720 p,mol/mol) with future climatic 
conditions after 100 years based on the Hadley Center Global Climate Model (HADCM2 ) 
(Johns et al., 1997). The stochastic weather generator, LARS-WG V2.6 was used to simulate the 
weather data (Racsko et. aI, 1991; Semenov et. aI, 1998; Semenov et. al 1999). It required three 
input files: 1) latitude, longitude and elevation, 2) observed weather data consisting of daily 
values for at least one year (we used 15 years in this study) and 3) weather scenario files created 
by using the relationship between 100 years of simulated historical weather data from 
VegetationlEcosystem Modeling and Analyzing Project (VEMAP) phase 2 (Kittel et al., 1997) 
grided record (1895-1993) and 100 years of simulated weather data for high CO2 conditions 
using the UKMO Hadley center HADCM2 global climate model (Johns et al., 1997). One 
hundred normal and high CO2 "years" were generated for three locations in Nebraska: Havelock 
(sub-humid climate; 40° 51' N Lat, 96° 36' W Long., 347 m elev.), Alliance (semi-arid climate; 
42° 30' N Lat, 102° 55' W Long., 1213 m elev.) and Dickens (transition between sub-humid and 
semi-arid; 40° 57' N Lat, 100° 58' W Long., 945 m elev.). These three locations are reasonably 
representative of the major portion of the winter wheat growing areas in the Central Great Plains 
of the US (Peterson, 1992). 

We ran the CERES-Wheat model using the normal CO2 concentration with current 
hundred years' weather and a doubled CO2 concentration of 720 p, mol/mol with the future 
hundred years' weather. Response Surface Methodology (RSM) was used to identify the levels 
of the six CERES-Wheat input variables to maximize grain yield at the three sites under normal 
and high CO2 conditions. A second-order design and model were then used to estimate the 
response surface near the maximum and finally, canonical analysis was used to characterize the 
nature of the surface around the maximum. 

2.1. Finding the area of the maximum: the method of steepest ascent. 

We used this method to sequentially find an area near the maximum yield using the 
following steps. The method of steepest ascent allows us to find the values of the six input 
variables (P 1D, P5, G 1, G2, G3 and planting density) in the area near the maximum yield. 

I: Starting values and ranges of experimental factors. Initial starting points for the six 
input variables were established by using the genetic coefficients for a winter wheat variety 
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'Karl-92' (Xue, 2000) and using the planting density commonly used by farmers at each location 
(Table 3). 'Karl-92' was chosen since it is a relatively modern cultivar adapted to the central 
Great Plains. The low and high values were chosen so that they were sufficiently different to 
ensure a primarily linear response but not large to induce curvature effects. 

II: First order experiments. Six input variables were considered in this study and use 
of a full factorial design with 2 levels for each in}mt factor would require an excessive number of 
simulations since it would be necessary to run 2 =64 design points with 100 years of simulations 
for each design point. Since the path of steepest ascent is computed from a planar-type of surface 
obtained by fitting a first-order main effects model excluding interactions, it is only necessary to 
use a portion of the 26 design points. In our study, Plackett-Burman design (PBD) was used 
because it allows one to evaluate up to n-1 factors in n design points when n is divisible by four 
(Lin And Draper, 1992). The first six columns from a n=12 PBD were considered to identify 
the 12 design points for each first-order experiment conducted when using the steepest ascent 
procedure (Table 4). 

III: First-order model and the path of steepest ascent. For a given first-order 
experiment, mean yields over 100 years of simulations were obtained for each of the design 
points. Using the mean yields as the values of the dependent variable, the following first-order 
model was fitted 

y = bo + lhiXi ; i=1,2, ... 6 

where the slope coefficients (bD were estimated using least-squares and the Xi were in coded 
form with Xi =+1 for the high level of the factor and Xi = -1 for the low level. To identify the 
path of steepest ascent, the largest Ibil was identified and the ratio bj / maxlbil, i:f:.j=1, ... 6 was 
obtained for each variable. Step sizes of !iXi =0.4 were used and values of Xj =ratio*!iXi + 
starting value, for each variable were identified as points on the path of steepest ascent. The 
points on the path were translated to the original scales for the six CERES-Wheat input variables 
and the crop model was simulated for each of the points on the path. Simulations were run for 
points along the path until either the mean of the simulated yield was substantially less than the 
predictions from the first-order model or when the mean yield decreased substantially. In 
addition to these cases, we stopped making runs on the path if at least one of the values for 
genetic factors was beyond the predefined ranges in Table 2. In either case, we stopped, returned 
to step II, another PBD was set up at that point and continued. If any of the genetic input was 
out of range, the values for those inputs were fixed at predefined and the subsequent first-order 
experiments were conducted varying the remaining inputs. 

IV: Terminating steepest ascent. The steps II to III were repeated until either (1) all 
the least squares slope coefficients (b/s) were small or (2) only a small increase in yield was 
obtained by additional runs on the path, or (3) the harvest index achieved a value of 0.5, the 
highest achievable value (Slafer et al., 1993). 

2.2. Simulation experiments near the area of the maximum: Second order design and 
model 

Assuming the method of steepest ascent identifies the values of the CERES-Wheat input 
variables near the maximum yield, an appropriate experimental design and estimated response 
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surface are then needed to precisely estimate the input values that maximize yield. A central 
composite design (CCD) was used to identify the design points for the final set of simulation 
runs (Myers and Montgomery, 1995). Using the means of the simulated yields for the points 
from the CCD, the following second order model was fitted 

Yi}= bo+ 2hiXi + 2huX/ + I2hijXiXj i,j = 1, ... ,k 
where b's are the linear (b i), quadratic (b ii ) and cross-product (bi}) regression coefficients 
estimated using least-squares and k is the number of input variables in the final experiment. In 
matrix notation, the model is written as 

Y = b() + X'b + X'BX , 
where X' = row vector of input values = [Xl X2 ... Xkl; b' = fbI b2 ....... bkl a row vector of 

linear slope coefficients, B = a matrix of quadratic and cross-product regression coefficients. 
These coefficients (b's) were estimated using least-squares and the fit of the model was evaluated 
using R2. The significance of each model term (linear, quadratic and cross product) was tested 
using residual error variance. 
2.3. Identifying input levels that maximized yield and evaluation of the surface 

The values of the experimental variables that maximized yield were determined by 
differentiating the second order model and equating the derivative to zero and solving as follows: 
8y 18X = b + 2Bx = 0 which implies that Xo= -112* Rl*b where Xo is the stationary point and 
the value of yield at the stationary point is yo= bo+ 112 *Xo' *b ,where B-1 is the inverse of B. 

To evaluate the surface in the area of the optimum, the second order model was 
transformed to the canonical model, 

Y = Yo + IAiW/, 
where the Ai' s are eigenvalues of B and the Wi'S are the canonical variables (Myers & 
Montgomery, 1995). The Wi'S are the variables for transformed axes that identify the Olientation 
of the second-order response surface. The canonical model is useful (1) for determining if the 
stationary point is a maximum, a minimum or a saddle point and (2) to evaluate the change in 
yield as one moves from the stationary point to the nearby points. The A/S identify the nature of 
the stationary point. If the A/s are all negative then any movement away from the stationary 
point will reduce y and so Xo is a maximum. Similarly, if all the A/s are positive, Xo is a 
minimum and when the A/s are mixed signs then Xo is a saddle point. 

The estimated surface was characterized on the basis of the following criterion: 
Case I: If the stationary point determined by the model was inside the experimental region and 
all Ai' s were less than zero, the stationary point, Xo is the point of maximum yield response. 
Case II: If the stationary point determined by the model was outside the range of the design 
points from the second-order design, and some Ai'S were less than zero and some were greater 
than zero, the stationary point, Xo was a saddle point. The saddle point can be evaluated by the 
values of the -Ai and +Ai. When the response surface was a saddle, a ridge of steepest ascent was 
estimated and further simulation runs on these ridges were conducted until there was only a 
slight increase in yield and this final point was considered maximum. 

3. Results and Discussion 
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The optimum values for the genetic factors suggested that the optimal cultivar for the 
future high CO2 conditions should have less photoperiod sensitivity (P1D), long grain filling 
duration (P5) and high kernel filling rate (G2) (Tables 6). This result agreed with Hall and Allen 
(1993) who found that cultivars for future climatic conditions should extend the grain filling 
period, shorten the duration of vegetative growth (which would also improve harvest index) and 
be adapted to appropriate photoperiod. 

Agronomic results from this study are presented for three cases for each location. Case 1 
is the current variety, Karl-92, under normal CO2 conditions. Case 2 is also for Karl-92 but under 
high CO2 conditions (future climatic scenario) and case 3 is the new cultivars determined by 
RSM under high CO2 conditions (Table 5). In all three cases, the increasing trends of yield were 
observed for semi-arid (Alliance, NE), transitional (Dickens, NE) to sub humid (Havelock, NE) 
environments (Tables 5). Overall, the results indicated that the 'optimal' cultivar under high CO2 

conditions produced 65% to 150% more yield than 'Karl 92' under normal CO2 conditions 
(Figures 1-3). This study also showed that the optimal variety had 20 to 35% more kernel weight 
and 35 to 90 % more kernels m-2 than 'Karl 92' under normal CO2 conditions, while kernels per 
spike was relatively unchanged (Figures 1-3). In addition, the optimal planting density under 
high CO2 conditions was from 1 % to 19% less than the currently used planting densities. More 
kernels m-2 with little change in kernels per spike and reduced planting density indicated that the 
number of tillers per plant was higher under high CO2 condition for both 'Karl 92' and the 
optimal cultivar. At all locations, the optimal varieties under high CO2 had shorter days to 
flower, grew faster, and had more kernels m-2 than 'Karl 92' under normal CO2 conditions, and 
yield was improved under high CO2 conditions by sowing three weeks later than normally 
practiced (Table 5). 

Identifying appropriate agronomic technologies that may be appropriate for future 
climatic conditions is difficult since (1) it is not possible to conduct field experiments under 
future climatic conditions and (2) because chamber experiments that approximate future climate 
conditions are by necessity quite small, may not accurately represent field conditions, and can 
only be used to evaluate a very few cultivars and/or agronomic practices at a time. Using 
response surface methodology in conjunction with crop and weather simulation models may 
allow researchers to identify combinations of plant traits and management practices that indicate 
needed changes in managed field crop systems as a result of future climate scenarios. The 
approach can be useful (1) in understanding the complex relationships among crop genotypes, 
climate and management, (2) for comparing various crop and weather models regarding the 
theoretical optima and (3) to agricultural scientists and policy makers who are assessing how 
climate change may impact the agriculture and society. 

The method of steepest ascent also has several limitations. The method will identify the 
area near the global optimum if the response surface is quadratic in the X's. In situations where 
the surface is more complicated than a quadratic, the method of steepest ascent may identify an 
area near a local optimum. One way to check if the area contains a global optimum is to evaluate 
points away from identified area to ensure they are sub-optimal. Another approach is to begin a 
new steepest ascent session with different starting points and a global area of the optimum would 
be indicated if a similar area is identified as before. In this application, we considered points 
outside the final design and different starting values which both indicated that we had identified 
the area that contained the global maximum. Also, the method of steepest ascent can also be 
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quite time consuming since the approach is sequential in nature. 

4. Summary 

In this study, application of this methodology to winter wheat in the US Great Plains 
tended to support the hypothesis that under high CO2 - high temperature conditions, 
translocating more energy to the tillering and grain size at the expense of other traits of the plant 
could result in dramatically higher yields without substantially changing crop management 
practices except planting dates. Although this type of information can be only considered 
preliminary since it is strongly based on the assumptions that the weather and plant simulation 
models produce valid predictions, it can be a valuable tool in assessing how climate changes may 
impact winter wheat production in the US Great Plains in the years to come. Using response 
surface methodology in conjunction with crop and weather simulation models may allow 
researchers to identify combinations of plant traits and management practices that indicate 
needed changes in managed field crop systems as a result of future climate scenarios. The 
approach can be useful (1) in understanding the complex relationships among crop genotypes, 
climate and management, (2) for comparing various crop and weather models regarding the 
theoretical optima and (3) to agricultural scientists and policy makers who are assessing how 
climate change may impact the agriculture and society. 
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Table 1. Sowing date used for current and future climatic scenarios in three Nebraska 
locations 

Scenario Alliance Dickens Havelock 

Current September 8 September 18 September 26 
(COz=360jlmol mor l ) 

Future September29 October 9 October 17 
(COz=720jlmol mor l ) 

Table 2. Predefined ranges for the value of Genetic Input variables used in the CERES· Wheat 
model 

Input 
P1D 
P5 
G1 
G2 
G3 

Lower limit 
1.0 
1.0 
1.1 
1.3 
1.0 

Upper limit 
4.7 
5.0 
5.5 
6.8 
4.4 

P1D = Photoperiod sensitivity; P5=grain filling duration, G 1= related to kernel number per Spike; 
G2=Kernel filling rate; G3= related to kernel weight 

Table 3. Initial values and ranges for CERES· Wheat input variables used in the steepest ascent 
procedure to identify an area near maximum yield: 

Location PID P5 G1 G2 G3 Plants/Mz 
Alliance 2.9 1.5 4.0 2.1 2.0 160 
Dickens 2.9 1.5 4.0 2.1 2.0 200 
Havelock 2.9 1.5 4.0 2.1 2.0 260 
Range ±0.2 ±0.2 ±0.2 ±0.2 ±0.2 ±1O 

P1D = Photoperiod sensitivity; P5=grain filling duration, G 1= related to kernel number per Spike; 
G2=Kernel filling rate; G3= related to kernel weight 
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Table 4. Design points for initial first-order experiment at Alliance, NE for CERES-Wheat input 
variables used in the steepest ascent procedure to identify an area near maximum yield 

Design PID PS Gl G2 G3 Plants/M2 
~oint 
1 3.1 1.3 4.2 1.9 1.8 150 
2 3.1 1.7 3.8 2.3 1.8 150 
3 2.7 1.7 4.2 1.9 2.2 150 
4 3.1 1.3 4.2 2.3 1.8 170 
5 3.1 1.7 3.8 2.3 2.2 150 
6 3.1 1.7 4.2 1.9 2.2 170 
7 2.7 1.7 4.2 2.3 1.8 170 
8 2.7 1.3 4.2 2.3 2.2 150 
9 2.7 1.3 3.8 2.3 2.2 170 
10 3.1 1.3 3.8 1.9 2.2 170 
11 2.7 1.7 3.8 1.9 1.8 170 
12 2.7 1.3 . 3.8 1.9 1.8 150 

PID = Photoperiod sensitivity; P5=grain filling duration, GI= related to kernel number per Spike; 
G2=Kernel filling rate; G3= related to kernel weight 
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Table 5. Wheat Plant and Required Management for maximum yield at Lincoln, Dickens and Alliance, NE under high CO2 and --..] 
current climatic conditions ( Karl92= ' Karl 92'; New=' optimal variety'; 360= normal CO2 conditions' ;720= ' high CO2 0\ 

conditions') 

Havelock Dickens Alliance 
Karl92- Karl92- New- Karl 92- Karl 92- New- Karl 92- Karl92- New-
360 720 720 360 720 720 360 720 720 

Planting Date September October October September October October September September September 
26 17 l7 18 09 09 08 29 29 

Plant Population 260/m2 260/m2 238/m2 200/m2 200/m2 198/m2 160/m2 160/m2 132/m2 

Flowering 146 l38 139 152 141 l38 156 143 133 
Date(DOY) (May 26) (May 18) (May 19) (J une 1) (May 21) (May 18) (June 05) (May 23) (May 13) 

Physiological 176 168 172 185 172 l70 188 l75 168 
Maturity(DOY) (J LIne 25) (J une 17) (J une 21) (July 4) (June 21) (June 19) (J uly (7) (June 24) (J un 17) 

Grain YieJd(KgI Ha) 3371 3367 5805 2868 3104 5106 1990 2608 5086 

Weight! Grain(mg) 30.4 30.1 37.2 30.1 29.3 37.78 28.3 28.9 38.1 

Grain/m2 11077 11175 15650 9453 10563 l3494 6981 ·8955 13288 

Grain/spike 11 9 15 9 8 9 8 7 9 

Leaf Area Index 3.37 3.18 2.96 2.48 2.73 2.64 2.34 2.89 2.64 
Cm2/m2) ~ 
Biomass at 6656 6124 6563 5145 5289 5280 4919 5171 5321 

~ 

== Anthesis(kg/ha) '" ~ 
'" Biomass at 10267 10182 11567 8334 9334 9983 6881 8333 9863 \FJ -Harvest(kg/ha) ~ -Stalk at 6897 6815 5762 5467 6229 4877 4890 5725 4776 1'0 

e 
Harvest(kg/ha) 

== ... 
Harvesting 0.33 0.33 0.5 0.34 0.33 0.5 0.28 0.31 0.50 < 

1'0 

IndexCkg/kg) -: 
'" - --.- ... --------------.-~-------------. "--------------------"._------------------------

~ 
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Table 6. genetic coefficient values for existing variety, Karl-92 and new varieties for each 
location ( Karl92= ' Karl 92'; New=' optimal variety'; 360= normal CO2 conditions' ;720= ' high 
CO2 conditions') 

Factors Karl92 Alliance Dickens Havelock 
New_720 New_720 New_720 

P1V 6 6 6 6 
P1D 2.9 1 2.3 1.9 
P5 l.5 2 1.6 4.7 
G1 4 5.5 5.2 5.5 
G2 2.1 4.8 3.5 6 
G3 2 2 2 2 

PID = Photoperiod sensitivity; P5=grain filling duration, GI= related to kernel number per Spike; 
G2=Kernel filling rate; G3= related to kernel weight 

Figure 1. Grain and biomass components( Grn_yld=' grain yield'; Grn_wt=' weight per grain'; 
Grn_sqm= ' grains per square meter'; Grn_ear=' grains per spike'; Bm_anth= ' biomass at 
anthesis'; Bm_hrv= ' biomass at harvest' ; Stalk_hrv= 'stalk at harvest'; Lai=' leaf area index') as 
proportion of Karl 92 under normal conditions at Alliance, NE for four cases( Karl92= ' Karl 92'; 
New=' optimal variety'; 360= normal CO2 conditions' ;720= ' high CO2 conditions') 
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Figure 2. Grain and biomass components( Grn_yld=' grain yield'; Grn_wt=' weight per grain'; 
Grn_sqm= ' grains per square meter'; Grn_ear=' grains per spike'; Bm_anth= ' biomass at 
anthesis'; Bm_hrv= ' biomass at harvest' ; Stalk_hrv= 'stalk at harvest'; Lai=' leaf area index') as 
proportion of Karl 92 under normal conditions at Dickens, NE for four cases( Karl92= ' Karl 92'; 
New=' optimal variety'; 360= normal CO2 conditions' ;720= ' high CO2 conditions') 
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Figure 3. Grain and biomass components( Grn_yld=' grain yield'; Grn_wt=' weight per grain'; 
Grn_sqm= ' grains per square meter'; Grn_ear=' grains per spike'; Bm_anth= ' biomass at 
anthesis'; Bm_hrv= ' biomass at harvest' ; Stalk_hrv= 'stalk at harvest'; Lai=' leaf area index') as 
proportion of Karl 92 under normal conditions at Havelock, NE for four cases( Karl92= ' Karl 92'; 
New=' optimal variety'; 360= normal CO2 conditions' ;720= ' high CO2 conditions') 
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