9 research outputs found

    AUF1 is involved in splenic follicular B cell maintenance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The adenosine/uridine-rich element (ARE)-binding protein AUF1 functions to regulate the inflammatory response through the targeted degradation of cytokine and other mRNAs that contain specific AREs in their 3' noncoding region (3' NCR). To investigate the role of AUF1 in the immune system, we characterized the lymphoid compartments of AUF1-deficient mice.</p> <p>Results</p> <p>Mice lacking AUF1 exhibit an altered proportion and size of splenic B cell subsets. We show prominent apoptosis in splenic B cell follicles and reduced expression of Bcl-2, A1, and Bcl-X<sub>L </sub>correlate with increased turnover and significant reduction in the number and proportion of splenic FO B cells in AUF1-deficient mice. In addition, AUF1-deficient mice exhibit a sharp decrease in splenic size and lymphocyte cellularity. Bone marrow transfer studies demonstrate that AUF1 deficiency induces cell-autonomous defects in mature B cell subsets but not in the overall number of splenocytes. Reconstitution of irradiated adult AUF1-deficient mice with wild-type bone marrow restores the proportion of FO and marginal zone (MZ) B cells, but does not rescue the decrease in the number of splenocytes. Functionally, AUF1-deficient mice mount an attenuated response to T cell-independent (TI) antigen, which correlates with impaired MZ B cell function.</p> <p>Conclusion</p> <p>These data indicate that AUF1 is important in the maintenance of splenic FO B cells and adequate humoral immune responses.</p

    Mitotic Raptor Promotes mTORC1 Activity, G2/M Cell Cycle Progression, and Internal Ribosome Entry Site-Mediated mRNA Translation▿ †

    No full text
    The mTOR signaling complex integrates signals from growth factors and nutrient availability to control cell growth and proliferation, in part through effects on the protein-synthetic machinery. Protein synthesis rates fluctuate throughout the cell cycle but diminish significantly during the G2/M transition. The fate of the mTOR complex and its role in coordinating cell growth and proliferation signals with protein synthesis during mitosis remain unknown. Here we demonstrate that the mTOR complex 1 (mTORC1) pathway, which stimulates protein synthesis, is actually hyperactive during mitosis despite decreased protein synthesis and reduced activity of mTORC1 upstream activators. We describe previously unknown G2/M-specific phosphorylation of a component of mTORC1, the protein raptor, and demonstrate that mitotic raptor phosphorylation alters mTORC1 function during mitosis. Phosphopeptide mapping and mutational analysis demonstrate that mitotic phosphorylation of raptor facilitates cell cycle transit through G2/M. Phosphorylation-deficient mutants of raptor cause cells to delay in G2/M, whereas depletion of raptor causes cells to accumulate in G1. We identify cyclin-dependent kinase 1 (cdk1 [cdc2]) and glycogen synthase kinase 3 (GSK3) pathways as two probable mitosis-regulated protein kinase pathways involved in mitosis-specific raptor phosphorylation and altered mTORC1 activity. In addition, mitotic raptor promotes translation by internal ribosome entry sites (IRES) on mRNA during mitosis and is demonstrated to be associated with rapamycin resistance. These data suggest that this pathway may play a role in increased IRES-dependent mRNA translation during mitosis and in rapamycin insensitivity

    Regulation of Protein Synthesis by Ionizing Radiation▿ †

    No full text
    Ionizing radiation (IR) is a physiologically important stress to which cells respond by the activation of multiple signaling pathways. Using a panel of immortalized and transformed breast epithelial cell lines, we demonstrate that IR regulation of protein synthesis occurs in nontransformed cells and is lost with transformation. In nontransformed cells, IR rapidly activates the MAP kinases ERK1/2, resulting in an early transient increase in cap-dependent mRNA translation that involves mTOR and is radioprotective, enhancing the translation of a subset of mRNAs encoding proteins involved in DNA repair and cell survival. Following a transient increase in translation, IR-sensitive (nontransformed) cells inhibit cap-dependent protein synthesis through a mechanism that involves activation of p53, induction of Sestrin 1 and 2 genes, and stimulation of AMP kinase, inhibiting mTOR and hypophosphorylating 4E-BP1. IR is shown to block proteasome-mediated decay of 4E-BP1, increasing its abundance and the sequestration of eIF4E. The IR signal that impairs mTOR-dependent protein synthesis at late times is assembly of the DNA damage response machinery, consisting of Mre11, Rad50, and NBS1 (MRN); activation of the MRN complex kinase ATM; and p53. These results link genotoxic signaling from the DNA damage response complex to the control of protein synthesis

    Heterogeneity in NECTIN4 Expression Across Molecular Subtypes of Urothelial Cancer Mediates Sensitivity to Enfortumab Vedotin.

    No full text
    PurposeEnfortumab vedotin (EV) is an antibody-drug conjugate (ADC) targeting NECTIN4 (encoded by the PVRL4/NECTIN4 gene) approved for treatment-refractory metastatic urothelial cancer. Factors that mediate sensitivity or resistance to EV are unknown. In this study, we sought to (i) examine heterogeneity of NECTIN4 gene expression across molecular subtypes of bladder cancer and (ii) determine whether NECTIN4 expression mediates EV sensitivity or resistance.Experimental designMolecular subtyping and NECTIN4 expression data from seven muscle-invasive bladder cancer clinical cohorts (n = 1,915 total specimens) were used to assess NECTIN4 expression across molecular subtypes. The outcome of the transcriptomic analysis was relative NECTIN4 expression in the consensus molecular subtypes of bladder cancer. Expression of NECTIN4 was validated in bladder cancer cell lines. NECTIN4 was stably overexpressed or knocked down in basal and luminal bladder cancer cell lines and EV drug sensitivity assays were performed, as measured by cell proliferation and clonogenic assays.ResultsNECTIN4 expression is heterogenous across molecular subtypes of bladder cancer and significantly enriched in luminal subtypes. NECTIN4 expression is positively correlated with luminal markers GATA3, FOXA1, and PPARG across all cohorts. NECTIN4 expression is both necessary and sufficient for EV sensitivity in luminal and basal subtypes of urothelial bladder cancer cells. Downregulation of NECTIN4 leads to EV resistance.ConclusionsSensitivity to EV is mediated by expression of NECTIN4, which is enriched in luminal subtypes of bladder cancer. These findings may have implications for biomarker development, patient selection, and the inclusion of molecular subtyping in ongoing and future EV clinical trials.See related commentary by Teo and Rosenberg, p. 4950

    Effect of presenilins in the apoptosis of thymocytes and homeostasis of CD8+ T cells

    No full text
    Many studies have positioned Notch signaling at various critical junctions during T-cell development. There is, however, debate regarding the role of Notch in the CD4 versus CD8 lineage commitment. Because there are 4 Notch receptors and RBP-Jκ–independent Notch signaling has been reported, we decided to eliminate γ-secretase activity once its activity is required for all forms of Notch signaling. T-cell–specific elimination of γ-secretase was carried out by crossing presenilin-1 (PS1) floxed mice with CD4-Cre mice and PS2 KO mice, generating PS KO mice. Thymic CD4+CD8+ double-positive (DP) cells from these mice were strikingly resistant to apoptosis by anti-CD3 treatment in vivo and expressed more Bcl-XL than control thymocytes, and deletion of only one allele of Bcl-XL gene restored wild-type levels of sensitivity to apoptosis. In addition, these PS KO animals displayed a significant decrease in the number of CD8+ T cells in the periphery, and these cells had higher level of phosphorylated p38 than cells from control littermates. Our results show that ablation of presenilins results in deficiency of CD8 cells in the periphery and a dramatic change in the physiology of thymocytes, bringing to our attention the potential side effects of presenilin inhibitors in ongoing clinical trials
    corecore