6 research outputs found

    Opposing effects of narcotic gases and pressure on the striatal dopamine release in rats

    No full text
    International audienceNitrogen-oxygen breathing mixtures, for pressures higher than 0.5 MPa, decrease the release of dopamine in the rat striatum, due to the narcotic potency of nitrogen. In contrast, high pressures of helium-oxygen breathing mixtures of more than 1-2 MPa induce an increase of the striatal dopamine release and an enhancement of motor activity, referred to as the high pressure nervous syndrome (HPNS), and attributed to the effect of pressure per se. It has been demonstrated that the effect of pressure could be antagonized by narcotic gas in a ternary mixture, but most of the narcotic gas studies measuring DA release were executed below the threshold for pressure effect. To examine the effect of narcotic gases at pressure on the rat striatal dopamine release, we have used two gases, with different narcotic potency, at sublethargic pressure, nitrogen at 3 MPa and argon at 2 MPa. In addition, to dissociate the effect of the pressure, we have used nitrous oxide at 0.1 MPa to induce narcosis at very low pressure, and helium at 8 MPa to study the effect of pressure per se. In all the narcotic conditions we have recorded a decrease of the striatal dopamine release. In contrast, helium pressure induced an increase of DA release. For the pressures used, the results suggest that the decrease of dopamine release was independent of such an effect of the pressure. However, for the same narcotic gas, the measurements of the extracellular DA performed in the striatum seem to reflect an opposing effect of pressure, since the decrease in DA release is lower with increasing pressure

    Opposing effects of narcotic gases and pressure on the striatal dopamine release in rats

    No full text
    International audienceNitrogen-oxygen breathing mixtures, for pressures higher than 0.5 MPa, decrease the release of dopamine in the rat striatum, due to the narcotic potency of nitrogen. In contrast, high pressures of helium-oxygen breathing mixtures of more than 1-2 MPa induce an increase of the striatal dopamine release and an enhancement of motor activity, referred to as the high pressure nervous syndrome (HPNS), and attributed to the effect of pressure per se. It has been demonstrated that the effect of pressure could be antagonized by narcotic gas in a ternary mixture, but most of the narcotic gas studies measuring DA release were executed below the threshold for pressure effect. To examine the effect of narcotic gases at pressure on the rat striatal dopamine release, we have used two gases, with different narcotic potency, at sublethargic pressure, nitrogen at 3 MPa and argon at 2 MPa. In addition, to dissociate the effect of the pressure, we have used nitrous oxide at 0.1 MPa to induce narcosis at very low pressure, and helium at 8 MPa to study the effect of pressure per se. In all the narcotic conditions we have recorded a decrease of the striatal dopamine release. In contrast, helium pressure induced an increase of DA release. For the pressures used, the results suggest that the decrease of dopamine release was independent of such an effect of the pressure. However, for the same narcotic gas, the measurements of the extracellular DA performed in the striatum seem to reflect an opposing effect of pressure, since the decrease in DA release is lower with increasing pressure

    Acide docosahexaénoïque et maladie d’Alzheimer : des raisons d’espérer ?

    No full text
    Alzheimer’s disease is a major public health concern in all developped countries. Although the precise cause of Alzheimer’s disease is still unknown, soluble oligomers of the neurotoxic hydrophobic amyloid-β (Aβ) peptide are known to play a critical role. Aging is associated with a loss of docosahexaenoic acid (DHA) in brain tissues in which it is the main polyunsaturated fatty acid. Epidemiological studies on human populations suggested that diets enriched in ω3 fatty acids are associated with reduced risk of Alzheimer’s disease. Furthermore, patients affected by Alzheimer’s disease display lower levels of DHA in plasma and brain tissues as compared to control subjects of same age. Studies on animals showed that diets enriched with DHA limit the synaptic loss and cognitive defects induced by the Aβ peptide. Several mechanisms have been proposed for this protective effects. DHA can induce the expression of potentially protective genes. Conversion of DHA into neuroprotectins has been shown to be alternatively involved in the protection against the Aβ peptide. Eventually, results have been provided suggesting that particular membrane microdomains could be remodelled and subsequently be involved in the neuroprotective process induced by DHA
    corecore