74 research outputs found

    ASSESSING NUMERACY IN ONCOLOGY: THE ROLE OF PATIENT PERCEPTION AND PREFERENCES

    Get PDF
    Treatment decision making (TDM) in oncology is complex. Understanding treatment information is essential for shared TDM. Research suggests many patients have low numeracy. This mixed methods study explored numeracy and experience with numbers in a sample of individuals diagnosed with follicular lymphoma. Participants completed questionnaires (N = 32) and interviews (N = 20) assessing numeracy, decisional conflict and regret, and number preference. Results suggest that mean objective numeracy was relatively high, and most reported high confidence in numerical ability. Most participants preferred to receive numbers during the TDM process. There was no relationship between numeracy and decision outcomes. Future research should investigate the use of numeracy measures in practice and the impact of patient preferences and beliefs on shared TDM

    In situ nutrient assays of periphyton growth in a lowland Costa Rican stream

    Full text link
    Nutrient limitation of primary production was experimentally assessed using an in situ bioassay technique in the Quebrada Salto, a third-order tropical stream draining the northern foothills of the Cordillera Central in Costa Rica. Bioassays employed artificial substrata enriched with nutrients that slowly diffuse through an agar-sand matrix (Pringle & Bowers, 1984). Multiple comparisons of regression coefficients, describing chlorophyll- a accrual through time for different nutrient treatments, revealed positive micronutrient effect(s). Micronutrient treatment combinations (Fe, B, Mn, Zn, Co, Mo, EDTA), supplemented with and without nitrate and phosphate, exhibited significantly greater chlorophyll- a accrual over all other treatments (P < 0.05), supporting over three times that of the control after 14-d of substratum colonization. Neither of the major nutrients (N or P) produced a significant stimulation, although the N treatment displayed ≃50% more chlorophyll- a than the control after 14-d. Similarly, Si, EDTA, and Si + N + P treatments did not exhibit chlorophyll- a response curves that were significantly different from the control. During the experiment, mean NH 4 -N and (NO 2 + NO 3 )-N concentrations in the Salto were 2.0 µM (28.6 µg · l −1 ) and 7.2 µM (100.2 µg · l −1 ), respectively. High concentrations of PO 4 -P ( = 2.0 µM; 60.9 µg · l −1 ) and TP ( = 3.0 µM; 94.0 µg · l −1 ) were also found, and consequently low molar N:P ratios = 4.7). Despite the potential for N limitation in the system, both N and P appear to be at growth saturating levels. This may be due to micronutrient limitation and/or light limitation of periphyton growth in densely shaded upstream portions of the stream.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42872/1/10750_2004_Article_BF00008489.pd

    Goal-driven Modeling for Confidence-based Patient Numeracy Assessment: C-PNA

    No full text

    Connecting Exosomes and Connexins

    No full text
    Intercellular communication is accomplished by passage of ions and small molecules through gap junction channels in directly contacting cells or by secretion and response to transmitters, hormones and extracellular vesicles in cells that are distant from each other. Recent studies have suggested that there may be overlap of these processes; specifically, small extracellular vesicles may contain subunit gap junction proteins, connexins. We isolated and analyzed extracellular vesicles secreted by cultured microvascular endothelial cells. These vesicles had a diameter of ~120 nm. They contained four exosomal proteins (flotillin-1, CD63, CD81 and Alix) and the gap junction protein, connexin43. They did not contain an endoplasmic reticulum protein (Grp94) or an adherens junction protein (VE-cadherin). Secretion of vesicles was increased by treatment of the cells with staurosporine. Our data confirm that the gap junction protein, connexin43, can be secreted in vesicles with the properties of exosomes. Although the role of vesicular connexin is not clearly known, we speculate that it might participate in docking/fusion of the exosomes with the recipient cell, transmission of vesicular contents, or cellular signaling
    corecore