25 research outputs found

    A Convolutional Neural Network for the Automatic Diagnosis of Collagen VI related Muscular Dystrophies

    Full text link
    The development of machine learning systems for the diagnosis of rare diseases is challenging mainly due the lack of data to study them. Despite this challenge, this paper proposes a system for the Computer Aided Diagnosis (CAD) of low-prevalence, congenital muscular dystrophies from confocal microscopy images. The proposed CAD system relies on a Convolutional Neural Network (CNN) which performs an independent classification for non-overlapping patches tiling the input image, and generates an overall decision summarizing the individual decisions for the patches on the query image. This decision scheme points to the possibly problematic areas in the input images and provides a global quantitative evaluation of the state of the patients, which is fundamental for diagnosis and to monitor the efficiency of therapies.Comment: Submitted for review to Expert Systems With Application

    A Convolutional Neural Network for the Automatic Diagnosis of Collagen VI related Muscular Dystrophies

    Full text link
    The development of machine learning systems for the diagnosis of rare diseases is challenging mainly due the lack of data to study them. Despite this challenge, this paper proposes a system for the Computer Aided Diagnosis (CAD) of low-prevalence, congenital muscular dystrophies from confocal microscopy images. The proposed CAD system relies on a Convolutional Neural Network (CNN) which performs an independent classification for non-overlapping patches tiling the input image, and generates an overall decision summarizing the individual decisions for the patches on the query image. This decision scheme points to the possibly problematic areas in the input images and provides a global quantitative evaluation of the state of the patients, which is fundamental for diagnosis and to monitor the efficiency of therapies.Comment: Submitted for review to Expert Systems With Application

    EZH2 regulates neuroepithelium structure and neuroblast proliferation by repressing p21

    Get PDF
    The function of EZH2 as a transcription repressor is well characterized. However, its role during vertebrate development is still poorly understood, particularly in neurogenesis. Here, we uncover the role of EZH2 in controlling the integrity of the neural tube and allowing proper progenitor proliferation. We demonstrate that knocking down the EZH2 in chick embryo neural tubes unexpectedly disrupts the neuroepithelium (NE) structure, correlating with alteration of the Rho pathway, and reduces neural progenitor proliferation. Moreover, we use transcriptional profiling and functional assays to show that EZH2-mediated repression of p21contributes to both processes. Accordingly, overexpression of cytoplasmic p21induces NE structural alterations and p21suppression rescues proliferation defects and partially compensates for the structural alterations and the Rho activity. Overall, our findings describe a new role of EZH2 in controlling the NE integrity in the neural tube to allow proper progenitor proliferation.This study was supported by grants CSD2006-00049, BFU2009-11527, BFU-2012-34261 to M.A.M.-B. and BFU2009-11527 and BIO2006-15557 to X.C. from the Spanish Ministry of Education and Science, 090210 from Fundaciò La Marató de TV3 and Fondation Jérôme Lejeune to M.A.M.-B. and 200420E578 from the CSIC to X.C. N.A., C.E. and M.A.G. received an I3P fellowship (I3P-BPD2005) and FPU fellowship, respectivelyPeer Reviewe

    Late-onset thymidine kinase 2 deficiency: a review of 18 cases

    Get PDF
    Background: TK2 gene encodes for mitochondrial thymidine kinase, which phosphorylates the pyrimidine nucleosides thymidine and deoxycytidine. Recessive mutations in the TK2 gene are responsible for the ‘myopathic form’ of the mitochondrial depletion/multiple deletions syndrome, with a wide spectrum of severity. Methods: We describe 18 patients with mitochondrial myopathy due to mutations in the TK2 gene with absence of clinical symptoms until the age of 12. Results: The mean age of onset was 31 years. The first symptom was muscle limb weakness in 10/18, eyelid ptosis in 6/18, and respiratory insufficiency in 2/18. All patients developed variable muscle weakness during the evolution of the disease. Half of patients presented difficulty in swallowing. All patients showed evidence of respiratory muscle weakness, with need for non-invasive Mechanical Ventilation in 12/18. Four patients had deceased, all of them due to respiratory insufficiency. We identified common radiological features in muscle magnetic resonance, where the most severely affected muscles were the gluteus maximus, semitendinosus and sartorius. On muscle biopsies typical signs of mitochondrial dysfunction were associated with dystrophic changes. All mutations identified were previously reported, being the most frequent the in-frame deletion p.Lys202del. All cases showed multiple mtDNA deletions but mtDNA depletion was present only in two patients. Conclusions: The late-onset is the less frequent form of presentation of the TK2 deficiency and its natural history is not well known. Patients with late onset TK2 deficiency have a consistent and recognizable clinical phenotype and a poor prognosis, due to the high risk of early and progressive respiratory insufficiency

    Growth Differentiation Factor 15 is a potential biomarker of therapeutic response for TK2 deficient myopathy

    Get PDF
    GDF-15 is a biomarker for mitochondrial diseases. We investigated the application of GDF-15 as biomarker of disease severity and response to deoxynucleoside treatment in patients with thymidine kinase 2 (TK2) deficiency and compared it to FGF-21. GDF-15 and FGF-21 were measured in serum from 24 patients with TK2 deficiency treated 1–49 months with oral deoxynucleosides. Patients were grouped according to age at treatment and biomarkers were analyzed at baseline and various time points after treatment initiation. GDF-15 was elevated on average 30-fold in children and 6-fold in adults before the start of treatment. There was a significant correlation between basal GDF-15 and severity based on pretreatment distance walked (6MWT) and weight (BMI). During treatment, GDF-15 significantly declined, and the decrease was accompanied by relevant clinical improvements. The decline was greater in the paediatric group, which included the most severe patients and showed the greatest clinical benefit, than in the adult patients. The decline of FGF-21 was less prominent and consistent. GDF-15 is a potential biomarker of severity and of therapeutic response for patients with TK2 deficiency. In addition, we show evidence of clinical benefit of deoxynucleoside treatment, especially when treatment is initiated at an early age

    Growth Differentiation Factor 15 is a potential biomarker of therapeutic response for TK2 deficient myopathy

    Get PDF
    GDF-15 is a biomarker for mitochondrial diseases. We investigated the application of GDF-15 as biomarker of disease severity and response to deoxynucleoside treatment in patients with thymidine kinase 2 (TK2) deficiency and compared it to FGF-21. GDF-15 and FGF-21 were measured in serum from 24 patients with TK2 deficiency treated 1-49 months with oral deoxynucleosides. Patients were grouped according to age at treatment and biomarkers were analyzed at baseline and various time points after treatment initiation. GDF-15 was elevated on average 30-fold in children and 6-fold in adults before the start of treatment. There was a significant correlation between basal GDF-15 and severity based on pretreatment distance walked (6MWT) and weight (BMI). During treatment, GDF-15 significantly declined, and the decrease was accompanied by relevant clinical improvements. The decline was greater in the paediatric group, which included the most severe patients and showed the greatest clinical benefit, than in the adult patients. The decline of FGF-21 was less prominent and consistent. GDF-15 is a potential biomarker of severity and of therapeutic response for patients with TK2 deficiency. In addition, we show evidence of clinical benefit of deoxynucleoside treatment, especially when treatment is initiated at an early age

    Pathological Features in Paediatric Patients with TK2 Deficiency

    Get PDF
    Thymidine kinase (TK2) deficiency causes mitochondrial DNA depletion syndrome. We aimed to report the clinical, biochemical, genetic, histopathological, and ultrastructural features of a cohort of paediatric patients with TK2 deficiency. Mitochondrial DNA was isolated from muscle biopsies to assess depletions and deletions. The TK2 genes were sequenced using Sanger sequencing from genomic DNA. All muscle biopsies presented ragged red fibres (RRFs), and the prevalence was greater in younger ages, along with an increase in succinate dehydrogenase (SDH) activity and cytochrome c oxidase (COX)-negative fibres. An endomysial inflammatory infiltrate was observed in younger patients and was accompanied by an overexpression of major histocompatibility complex type I (MHC I). The immunofluorescence study for complex I and IV showed a greater number of fibres than those that were visualized by COX staining. In the ultrastructural analysis, we found three major types of mitochondrial alterations, consisting of concentrically arranged lamellar cristae, electrodense granules, and intramitochondrial vacuoles. The pathological features in the muscle showed substantial differences in the youngest patients when compared with those that had a later onset of the disease. Additional ultrastructural features are described in the muscle biopsy, such as sarcomeric de-structuration in the youngest patients with a more severe phenotype

    Guia per treballar i avaluar les competències generals de la UAB

    Get PDF
    Data d'actualització: abril de 2021La UAB va encetar fa un parell d'anys un projecte de revisió de les competències generals que haurien d'incloure tots els seus estudis de grau amb aquesta idea d'adaptar els estudis a la realitat canviant de la societat. L'objectiu d'aquesta guia és dotar la institució, i especialment aquelles persones directament relacionades amb el disseny i la millora de la qualitat de les titulacions de grau de la UAB, d'un marc i d'unes eines per adaptar els graus als nous requeriments de la societat a través de les competències generals que s'han redefinit

    A Convolutional Neural Network for the automatic diagnosis of collagen VI-related muscular dystrophies

    No full text
    The development of machine learning systems for the diagnosis of rare diseases is challenging, mainly due to the lack of data to study them. This paper surmounts this obstacle and presents the first Computer-Aided Diagnosis (CAD) system for low-prevalence collagen VI-related congenital muscular dystrophies. The proposed CAD system works on images of fibroblast cultures obtained with a confocal microscope and relies on a Convolutional Neural Network (CNN) to classify patches of such images in two classes: samples from healthy persons and samples from persons affected by a collagen VI-related muscular distrophy. This fine-grained classification is then used to generate an overall diagnosis on the query image using a majority voting scheme. The proposed system is advantageous, as it overcomes the lack of training data, points to the possibly problematic areas in the query images, and provides a global quantitative evaluation of the condition of the patients, which is fundamental to monitor the effectiveness of potential therapies. The system achieves a high classification performance, with 95% of accuracy and 92% of precision on randomly selected independent test images, outperforming alternative approaches by a significant margin.Adrián Bazaga was supported by a JAE-intro scholarship granted by the Spanish Council of Scientific Research, and acknowledges funding from Innovate UK under grant number KTP011266. Josep M. Porta is supported by the Spanish Ministry of Economy and Competitiveness under project DPI2017-88282-P. Cecilia Jiménez-Mallebrera and Carmen Badosa are funded by the Health Institute ’Carlos III’ (ISCIII, Spain) and the European Regional Development Fund (ERDF/FEDER), ’A way of making Europe’, grants references PI16/00579, PI19/00122 and CP09/00011, and Fundación Noelia

    Proteomic and functional characterisation of extracellular vesicles from collagen VI deficient human fibroblasts reveals a role in cell motility

    Get PDF
    Abstract Extracellular vesicles (EVs) are key mediators of cell-to-cell communication. Their content reflects the state of diseased cells representing a window into disease progression. Collagen-VI Related Muscular Dystrophy (COL6-RD) is a multi-systemic disease involving different cell types. The role of EVs in this disease has not been explored. We compared by quantitative proteomics the protein cargo of EVs released from fibroblasts from patients with COL6-RD and controls. Isolated EVs contained a significant proportion of the most frequently reported proteins in EVs according to Exocarta and Vesiclepedia. We identified 67 differentially abundant proteins associated with vesicle transport and exocytosis, actin remodelling and the cytoskeleton, hemostasis and oxidative stress. Treatment of control fibroblasts with EVs from either patient or healthy fibroblasts altered significantly the motility of cells on a cell migration assay highlighting the functional relevance of EVs. In parallel, we analysed the secretome from the same cells and found a distinctly different set of 48 differentially abundant proteins related to extracellular matrix organisation and remodelling, growth factor response, RNA metabolism and the proteasome. The EVs and secretome sets of proteins only shared two identifiers indicating that the sorting of proteins towards EVs or the secretory pathway is tightly regulated for different functions
    corecore